

Building Modern
Web Applications
with
ASP.NET Core Blazor
Learn how to use Blazor to create powerful,
responsive, and engaging web applications

Brian Ding

www.bpbonline.com

Copyright © 2023 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, without the
prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the
accuracy of the information presented. However, the information
contained in this book is sold without warranty, either express or implied.
Neither the author, nor BPB Online or its dealers and distributors, will be
held liable for any damages caused or alleged to have been caused directly
or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of
the companies and products mentioned in this book by the appropriate use
of capitals. However, BPB Online cannot guarantee the accuracy of this
information.

First published: 2023

Published by BPB Online

WeWork

119 Marylebone Road

London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-55518-798

www.bpbonline.com

Dedicated to

My beloved parents:
Zhong Ding
Yi Hu
&
My wife, Haoran Diao

About the Author

Brian Ding has over 8 years of experience in TypeScript and .NET
development, specializing in areas such as WinForm, WPF, ASP.NET, and
ASP.NET Core. Currently employed at BMW Archermind Information
Technology Co Ltd, he holds the position of tech leader, where he focuses
on creating engaging digital driving experiences for BMW customers.
Throughout his career, Brian has worked in diverse domains including
Software Development, DevOps, Automation tools, and Cloud
Technologies. His passion lies in coding and developing scalable solutions
that are easy to maintain and adaptable.

About the Reviewer

Trilok Sharma is a seasoned technical architect with 14 years of expertise
in designing, developing, and implementing enterprise-level solutions on
the Microsoft technology stack. Throughout his career, Trilok Sharma has
demonstrated mastery in Microsoft technologies, including Blazor Server,
Blazor Web Assembly (WASM), .Net 7.0, Net Core, C#, Angular, React,
SQL Server, Azure, and AWS. He has a strong command over object-
oriented programming principles and has leveraged their knowledge to
architect scalable and efficient applications.

With their strong technical understanding, attention to detail, and
commitment to quality, Trilok Sharma continues to make valuable
contributions as a technical reviewer in the Microsoft technology space.

Trilok holds a Bachelor's in Computer Science and MBA in Project +IT
Management.

Acknowledgement

This book would not exist without the help of many people, mostly
including the continuous support from my parents and my wife's
encouragement for writing the book. They've taken most of the housework
so that I can focus on writing the book — I could have never completed
this book without their support.

My gratitude also goes to the team at BPB Publications for being
supportive enough to provide me with quite a long time to finish the book.
This is my first book ever, and I would like to thank them for their
professionalism, guidance, and patience along the way.

Preface

This book covers many different aspects of developing Blazor
applications, a modern way to build rich UI web applications. And this
book introduces how to leverage .NET and its eco-systems to build a
modern enterprise application. This book will introduce WebAssembly
and how it enables web applications to be written in any programming
language. It also compares different Blazor hosting models and the
strategy to select a model that suits that business requirements.

This book takes a demonstrative approach for Blazor learners. Every
chapter comes with a lot of code examples and Blazor source code
analysis. It covers basic Blazor directives and components and how these
concepts can be combined together to build a more complex customized
component. This book also explains some advanced techniques to control
component rendering and improve performance.

This book is divided into 13 It will start with the introduction of
WebAssembly and cover the basic concepts in Blazor Framework and
some advanced techniques you may find handy when developing
production-ready applications, as well as explaining source code
structures and designing patterns and styles. So, readers can learn from the
bottom how a Blazor application is running. The details are listed below.

Chapter 1: WebAssembly will introduce what WebAssembly is and the
roadmap of WebAssembly. The chapter will explain why WebAssembly is

proposed while JavaScript is powerful enough. A hello world
demonstration is given by compiling C/C++ source code into
WebAssembly. Calling WebAssembly functions from JavaScript code will
also be discussed. WASM binary format will be discussed along with the
introduction to different sections in the binary code. It will introduce the
popular languages that can produce WebAssembly modules, and
ASP.NET Core Blazor is one of those platforms that can be leveraged to
build web applications beyond WebAssembly.

Chapter 2: Choose Your Hosting will discuss WebSocket and compare the
difference between WebSocket and HTTP. Will introduce SignalR, a .NET
library that implements WebSocket and can fallback to long polling for
compatibility. This chapter will introduce the basic structure of a Blazor
application and compare three different Blazor hosting models, Blazor
Server, Blazor WebAssembly, and Blazor Hybrid.

Chapter 3: Implementing Razor and Other will cover basic components.
Blazor applications are made of components, and they share many useful
features, including directives, binding, cascading, and event handling. It
will explain the lifecycle of a typical component by introducing those
virtual lifecycle methods that can be overridden. It will introduce layout, a
special component type that can be useful in building an application with
multiple functional spaces. Will introduce some popular third-party
libraries that we can use to build enterprise applications.

Chapter 4: Advanced Techniques for Blazor Component will cover the
components source code and learn more advanced components features.
You will learn how to reference other components in code, how to
preserve components, how to use components with a template, and how to
define a CSS style dedicated to a specific component using CSS isolation.

Chapter 5: File Uploading in will cover the common file transfer protocols
and compare the differences between them. Will learn the component used
to upload files in Blazor Framework. This will explain the source code
and detail usage with code examples.

Chapter 6: Serving and Securing Files in will explain one of the most
important mechanisms in ASP.NET Core, middlewares. Middles work as
pipelines handling the requests from clients. We will cover serving static
files and dynamic files in Blazor framework, and a few basic security
rules you will apply to protect servers from attacks.

Chapter 7: Collecting User Input with will cover web forms which are
generally used when data input is required from application users. Will
explain the default data validation implemented in the source code and
how to customize validation rules and error prompts. Will cover some key
events and concepts in Blazor forms, including submission, context, and
state.

Chapter 8: Navigating Over will cover page navigations in a Blazor
application. An enterprise level application usually needs multiple pages
to fulfil a complete business requirement. It will also explain the key
routing components in Blazor framework with source code and introduce
different types of routing with parameters. And we will cover the
navigation events and how to navigate in an asynchronous approach.

Chapter 9: .NET and JavaScript will cover serialization and
deserialization with JSON, a common way to communicate between web
services, and that applies to the interop between .NET and JavaScript as

well. Will explain how to load customized JavaScript code in a simple
approach and in a more dynamic approach. Will cover calling JavaScript
from .NET and the vice versa, with code examples. Will introduce some
advanced topics related to .NET/JavaScript interop in Blazor, including
cache, element reference and type safety.

Chapter 10: Connecting to the World with will cover the most famous
HTTP protocol, and the separation of front-end and back-end services.
HTTP protocol is mostly used between the front-end and back-end. Will
cover the limits and risks come with the CORS when applications are
connected using HTTP protocol. Will explain built-in types HttpClient
and HttpClientFactory that will be used when communicating with the
outside world with the source code. Will cover RPC and gRPC, an
implementation of RPC from the Google with code examples.

Chapter 11: Data Persistence with EF will cover data persistence with
EntityFramework Core and compare 2 key concepts, stateless and stateful.
EntityFramework Core is popularly used in .NET Core project to store
data in a selected database. Will explain the design ideas behind
EntityFramework Core and analyze its source code to learn the patterns
supporting different databases. Will cover key concepts in
EntityFramework Core including entity, context, query, and migration
with detailed examples.

Chapter 12: Protecting Your Application with will cover authentication
and authorization in Blazor applications. Will explain the authentication
mechanism in Blazor and learn the source code of
AuthenticationStateProvider, which can be used to implement a
customized authentication. Will cover different authorization approaches,
including role-based and policy-based authorizations, with code examples.

Chapter 13: Deploying with Docker and will cover Blazor application
deployments. One of the modern ways to deploy your applications is
using Docker techniques and Kubernetes. Readers will learn how to
containerize Blazor applications and deploy it with Azure Kubernetes
Services and Azure Container Registry.

Code Bundle and Coloured Images

Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/i1gakbz

The code bundle for the book is also hosted on GitHub at In case there’s
an update to the code, it will be updated on the existing GitHub repository.

We have code bundles from our rich catalogue of books and videos
available at Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best
practices to ensure the accuracy of our content to provide with an
indulging reading experience to our subscribers. Our readers are our
mirrors, and we use their inputs to reflect and improve upon human errors,
if any, that may have occurred during the publishing processes involved.
To let us maintain the quality and help us reach out to any readers who
might be having difficulties due to any unforeseen errors, please write to
us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the
BPB Publications’ Family.

Did you know that BPB offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at www.bpbonline.com and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us at :

business@bpbonline.com for more details.

At you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on
BPB books and eBooks.

Piracy

If you come across any illegal copies of our works in any form on the
internet, we would be grateful if you would provide us with the location
address or website name. Please contact us at business@bpbonline.com
with a link to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in
either writing or contributing to a book, please visit We have worked with
thousands of developers and tech professionals, just like you, to help them
share their insights with the global tech community. You can make a

general application, apply for a specific hot topic that we are recruiting an
author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers
can then see and use your unbiased opinion to make purchase decisions.
We at BPB can understand what you think about our products, and our
authors can see your feedback on their book. Thank you!

For more information about BPB, please visit

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:

https://discord.bpbonline.com

Table of Contents

1. WebAssembly Introduction

Introduction

Structure

Objectives

What is WebAssembly

History of WebAssembly

Hello World with WebAssembly

Call WebAssembly from JavaScript

WebAssembly in the future

Popular WebAssembly languages

.NET Core

ASP.NET Core

When to choose ASP.NET Core Blazor

Conclusion

2. Choose Your Hosting Model

Introduction

Structure

Objectives

WebSocket

SignalR

Blazor Server

Blazor WebAssembly

Blazor Hybrid

Conclusion

3. Implementing Razor and Other Components

Introduction

Structure

Objectives

Razor components

Directive

Directive Attribute

One-way Binding

Binding Event

Binding Format

Unparsed value

Two-way binding

Cascading

Event Handling

Lifecycle

Layout

Libraries

Fast-blazor

MatBlazor

Ant Design Blazor

BootstrapBlazor

Conclusion

4. Advanced Techniques for Blazor Component Enhancement

Introduction

Structure

Component Reference

Components preserving

Template components

CSS Isolation

Conclusion

5. File Uploading in Blazor

Introduction

Structure

Objectives

Build comments for EShop

File transfer

File upload

Tips

Conclusion

6. Serving and Securing Files in Blazor

Introduction

Structure

Objectives

Middleware

Serve Static Files

Serve Dynamic Files

Security Advice

Conclusion

7. Collecting User Input with Forms

Introduction

Structure

Objectives

Forms

EditForm

InputBase

Validation

Custom Validation

Form submission

EditContext And Form State

Conclusion

8. Navigating Over Application

Introduction

Structure

Objectives

Router

RouteAttribute

NavLink

Route parameters

Navigation events and Asynchronous navigation

ASP.NET Core integration

Conclusion

9. .NET and JavaScript Interop

Introduction

Structure

Objectives

Serialization

Loading JavaScript

Initializer

Calling JavaScript from .NET

JavaScript isolation

Calling .NET from JavaScript

Cache

Element reference

Type safety

Conclusion

10. Connecting to the World with HTTP

Introduction

Structure

Objectives

Front-end and back-end separation

HTTP protocol

CORS

HttpClient

HttpClientFactory

HttpClient again

gRPC

Conclusion

11. Data Persistence with EF Core

Introduction

Structure

Objectives

Stateless and Stateful

EntityFramework Core

Context object

Data entities

Database migration

Data update

Data query

Conclusion

12. Protecting Your Application with Identity

Introduction

Structure

Objectives

Authentication

AuthenticationStateProvider

Authorization

Role-based Authorization

Policy-based Authorization

ASP.NET Core Identity

Conclusion

13. Deploying with Docker and Kubernetes

Introduction

Structure

Objectives

What is Docker

Building Docker Image

Image layer

What is K8S

K8S components

Deploy to AKS – K8S on Azure

Conclusion

Index

C

HAPTER
1

WebAssembly Introduction

Introduction

In this chapter, we will introduce the concept and roadmap of
WebAssembly and how it enables web applications to be written in any
programming language. We will also discuss a few popular WebAssembly
languages and illustrate the benefits of building a web application with
ASP.NET Core Blazor.

Structure

In this chapter, we will discuss the following topics:

What is WebAssembly

How to compile a WebAssembly module

What does a WebAssembly module look like

.NET Core with WebAssembly

Objectives

This chapter is intended to guide you briefly through the world of
WebAssembly, get familiar with WebAssembly modules and how .NET
Core is involved with WebAssembly. We will learn how to install
Emscripten SDK and will also get familiar with emcc command. We will
explore the world of WebAssembly binary format and understand how a
module was constructed. Finally, we will introduce the new generation of
.NET --- .NET Core with the WebAssembly framework, ASP.NET Core
Blazor.

What is WebAssembly

WebAssembly (abbreviated as Wasm) is a target for modern languages for
compilation of more than one language, designed to be highly efficient
while maintaining a safe sandbox environment. The definition seems to be
too official. But if we break it down to two words Web and we might get a
better understanding of WebAssembly. of course, everyone from a three-
year-old kid to the elders nowadays know that they are living in the world
of it. We can buy goods from watch videos on Youtube.com and check out
how friends' life is on

Assembly, on the other way around, might not be that obvious to those
who do not work with computer science. From recent years, most
developers write programs with advanced programming languages like
Golang, C# or But earlier, we did not have those advanced languages;
programmers used to write code with Assembly, which is more specific to
the hardware platform. For example, writing Assembly code for x86 CPU
and ARM CPU will have different key words and syntax. As a language
that is closer to the hardware level, Assembly language usually has higher
runtime efficiency than advanced languages. Now, you might guess that
WebAssembly is another assembly language running in the "web" -
browsers.

History of WebAssembly

Early in 1990s, the first web was created. At that time, the web was
mainly used by the scientists to share information. The web was designed
to be the media of static content. HTML defines the content. URL locates
the resources in the world of webs. The client (browser) would then send a
HTTP request to the server through URL and then render the HTML
content returned by the server. In this process, all the information
transported was static, and that means there was no way that a user could
interact with the web.

In 1995, Branden Eich designed a new language called JavaScript within
only ten days. It looks like Java, but is easier to use than Java, and even
non-professional website workers can understand it. However, Branden
himself seemed to not like JavaScript that much. He was of the belief that
everything that is excellent is not original, and everything original is not
excellent. With the Chrome from Google getting more and more popular,
JavaScript soon took place everywhere on the website. Even on the server
nowadays. Engine V8 from Google is enabling JavaScript to be used in a
large and complex project.

Hello World with WebAssembly

JavaScript has been good enough, then why do we bother creating another
"Assembly Language" for the web? As far as we all know, JavaScript is a
dynamic language, which means the type of a variable could be changed in
runtime, unlike C# or Java. For programmers or developers, it is very
convenient to write code, but it becomes cumbersome when it comes to the
interpreter. The interpreter must judge of which type the variable is while
running the code. Even armed with JIT compiler, compiling JavaScript into
machine code ahead, sometimes, it must be rolled back to the original code
under some circumstances. For this reason, many companies that build
browsers are looking for a more performance enhanced solution.

In April 2015, WebAssembly Community Group was founded. Two years
later, WebAssembly became one of the W3C standards. In 2019,
WebAssembly became one of the standard web languages, along with
HTML, CSS, and JavaScript. Through the years, most of the popular web
browsers have supported WebAssembly.

Many languages, for example, C/C++, C#, Go can be compiled to
WebAssembly now.

Let us take C/C++ as an example and write a simple C++ program that says
Hello World. Save it as hello.cpp under

#include

int main() {

 printf("Hello World!\n");

}

Emscripten SDK is an open-source SDK that compiles C/C++ to
WebAssembly, and auto-generates JavaScript code that can run the .wasm
file. Install the SDK following the instructions here
https://emscripten.org/docs/getting_started/downloads.html and compile the
code with the following command:

emcc hello.cpp -o hello.html

Now, you will get three output files, hello.js and shown as follows:

my-hello-world-demo

├───hello.cpp

└───hello.html

└───hello.js

└───hello.wasm

hello.html is the default web page, and hello.js is the code logic running on
it, designed by the Emscripten SDK.

Next, you will install Python from Now, open your command line or
terminal and move to my-hello-world-demo and enter python -m python
will start a server listening on port Open your browser and navigate to it
will show the files under my-hello-world-demo, then click a default
frontend page provided by emscripten will show. Refer to Figure

Figure Default Frontend Web Page

In the black box area, it shows Hello World! that we printed. A web that is
actually running the C++ code. If we open the DevTools and switch to
Console Tab, Hello World! is also printed there.

Call WebAssembly from JavaScript

Now, let us try something different, write a simple C++ function that can
be called by the page using JavaScript. Create another file function.cpp
and write the following code:

#include

extern "C"

{

 EMSCRIPTEN_KEEPALIVE

 int myAddFunc(int a, int b)

 {

 int c = a + b;

 return c;

 }

 EMSCRIPTEN_KEEPALIVE

 int myMinusFunc(int a, int b)

 {

 int c = a - b;

 return c;

 }

}

We have two functions here, myAddFunc will get the sum of two integers
and myMinusFunc will get the subtraction. Similarly, compile with the
command:

emcc function.cpp -o function.html

And the folder would look like:

my-hello-world-demo

├───function.cpp

└───function.html

└───function.js

└───function.wasm

└───hello.cpp

└───hello.html

└───hello.js

└───hello.wasm

We use python to start a server again and go to Nothing was printed in the
black box area this time and that's because we did not print anything in the
function! But we can call the two math functions provided by
WebAssembly this time. Open the DevTools, switch to the Console tab
and write _myAddFunc(1,2) and you will get 3 as the result. In fact, when
you are typing _myAddFunc the IntelliSense will tell you that the function
does exist in the context of page function.html. Try _myMinusFunc and it
will work as well. How exactly the web page loads the two math functions
we wrote here? Let us take a look at the generate function.html and

In the HTML body, it defines the frontend layout and page logic. We will
focus on the script section. It first initiated a Module object, which has a
few properties, for example, print, canvas, print shows Hello World! in the

previous code example on the web page by changing the value of the
element with ID "output" and print it to the console as well with
console.log(text);. setStatus is actually called when the page is first loaded
and if you refresh the page a few times quickly, you will see a caption says
And you might already guess it. It is downloading the WebAssembly file,
Next, we will discuss how the function.wasm was loaded and how the
function was called:

var asm = createWasm();

function createWasm() {

 function receiveInstance(instance, module) {

 var exports = instance.exports;

 Module['asm'] = exports;

 }

 function receiveInstantiationResult(result) {

 receiveInstance(result['instance']);

 }

 function instantiateArrayBuffer(receiver) {

 return getBinaryPromise().then(function (binary) {

 return WebAssembly.instantiate(binary, info);

 }).then(function (instance) {

 return instance;

 });

 }

 function instantiateAsync() {

 if (!wasmBinary && typeof WebAssembly.instantiateStreaming ==
'function' &&

 !isDataURI(wasmBinaryFile) && !isFileURI(wasmBinaryFile)
&& !ENVIRONMENT_IS_NODE &&

 typeof fetch == 'function') {

 return fetch(wasmBinaryFile, { credentials: 'same-origin'
}).then(function (response) {

 var result = WebAssembly.instantiateStreaming(response, info);

 return result.then(

 receiveInstantiationResult,

 function (reason) {

 return instantiateArrayBuffer(receiveInstantiationResult);

 });

 });

 } else {

 return instantiateArrayBuffer(receiveInstantiationResult);

 }

 }

 if (Module['instantiateWasm']) {

 var exports = Module['instantiateWasm'](info, receiveInstance);

 return exports;

 }

 instantiateAsync();

 return {};

}

function createExportWrapper(name, fixedasm) {

 return function () {

 var displayName = name;

 var asm = fixedasm;

 if (!fixedasm) {

 asm = Module['asm'];

 }

 if (!asm[name]) {

 assert(asm[name], 'exported native function `' + displayName + '`
not found');

 }

 return asm[name].apply(null, arguments);

 };

}

var _myAddFunc = Module["_myAddFunc"] =
createExportWrapper("myAddFunc");

var _myMinusFunc = Module["_myMinusFunc"] =
createExportWrapper("myMinusFunc");

Here is the key code of and it is fairly self-explained. A call to
createWasm() starting the process. Inside this function, it goes to
instantiateAsync() and we can guess from the function name that it will
initiate the WebAssembly. And it does provide two ways to instantiate. If
possible, it will fetch the wasm file through http protocol, in this case,

In this way, the wasm was loaded as a network stream, so
WebAssembly.instantiateStreaming was used to process the http response,
and if you open DevTools, switch to Network tab and refresh the page
again, you will notice a request to http://localhost:8000/function.wasm
and it returns Refer to Figure

Figure fetch function.wasm

WebAssembly.instantiateStreaming() will be responsible for compiling
and initiating the WebAssembly module, and it will be more efficient than
load wasm code directly by In practice, most of the WebAssembly
frameworks will choose WebAssembly.instantiateStreaming() to load the
WebAssembly and this explains that some websites built by
WebAssembly will be take longer to load for the first time than a website
built with purely JavaScript, since they will download the .wasm file
through network.

Otherwise, it will fall back to WebAssembly.instantiate() inside and the
name of the function indicates that it is load the binary format of directly.

Once the WebAssembly module was loaded, receiveInstantiationResult()
will be the callback to handle the instance of WebAssembly, and
instance.exports will be assigned to Module['asm'] to save the exports
from the WebAssembly. Finally, two lines of code generated by the

Emscripten SDK call and it will find the exported functions by name in
Function apply will be used to run the desired function with arguments.

We can prove it by opening DevTools, switch to Console tab and type:
_myAddFunc(2,3) and hit enter. As expected, the result is 5. Or we could
use Module['asm'] directly: Module['asm']['myAddFunc'](4,5) and it
shows 9 correctly. Great! Now, we know how the WebAssembly runs in
the web, but what exactly is in the Can we manually load it?

Introducing .WASM binary format

Let us try another example.

#include

extern "C"

{

 EMSCRIPTEN_KEEPALIVE

 int myMultiplyFunc(int a, int b)

 {

 int c = a * b;

 return c;

 }

}

This time, we will compile it to .wasm only, without generating html and
js file.

In the Terminal, type:

emcc manual.cpp -O3 –no-entry -o manual.wasm

Notice that –no-entry is required since we do not have a main() function
and we will build in STANDALONE_WASM mode. And the folder
would look like:

my-hello-world-demo

├───function.cpp

└───function.html

└───function.js

└───function.wasm

└───hello.cpp

└───hello.html

└───hello.js

└───hello.wasm

└───manual.cpp

└───manual.wasm

Open manual.wasm with a binary viewer or VS Code with appropriate
extensions.

00000000 00 61 73 6d 01 00 00 00 01 17 05 60 00 01 7f 60 .asm…...`..`

00000010 00 00 60 02 7f 7f 01 7f 60 01 7f 00 60 01 7f 01 ..`..`..`..

00000020 7f 03 07 06 01 02 00 03 04 00 04 05 01 70 01 02 p..

00000030 02 05 06 01 01 80 02 80 02 06 09 01 7f 01 41 90 A.

00000040 88 c0 02 0b 07 80 01 08 06 6d 65 6d 6f 72 79 02
.........memory.

00000050 00 0e 6d 79 4d 75 6c 74 69 70 6c 79 46 75 6e 63
..myMultiplyFunc

00000060 00 01 19 5f 5f 69 6e 64 69 72 65 63 74 5f 66 75
..__indirect_fu

00000070 6e 63 74 69 6f 6e 5f 74 61 62 6c 65 01 00 0b 5f
nction_table..._

00000080 69 6e 69 74 69 61 6c 69 7a 65 00 00 10 5f 5f 65
initialize...__e

00000090 72 72 6e 6f 5f 6c 6f 63 61 74 69 6f 6e 00 05 09
rrno_location...

000000a0 73 74 61 63 6b 53 61 76 65 00 02 0c 73 74 61 63
stackSave...stac

000000b0 6b 52 65 73 74 6f 72 65 00 03 0a 73 74 61 63 6b
kRestore...stack

000000c0 41 6c 6c 6f 63 00 04 09 07 01 00 41 01 0b 01 00
Alloc......A....

000000d0 0a 30 06 03 00 01 0b 07 00 20 00 20 01 6c 0b 04 .0....... . .l..

000000e0 00 23 00 0b 06 00 20 00 24 00 0b 10 00 23 00 20 .#.... .$....#.

000000f0 00 6b 41 70 71 22 00 24 00 20 00 0b 05 00 41 80 .k"pq".$.
....A.

00000100 08 0b ..2

Refer to the following code consisting of the magic number:

00000000 00 61 73 6d 01 00 00 00 01 17 05 60 00 01 7f 60

 ^^ ^^ ^^ ^^

The first four bytes are what we called the magic numbers, 0x00 0x61
0x73 0x6d representing \0asm if you convert by ASCII code. It means that
this is a .wasm file.

00000000 00 61 73 6d 01 00 00 00 01 17 05 60 00 01 7f 60

 ^^ ^^ ^^ ^^

The next four bytes are the version number, and we have 0x01 0x00 0x00
0x00 (little endian), version 1 here:

00000000 00 61 73 6d 01 00 00 00 01 17 05 60 00 01 7f 60

 ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^

00000010 00 00 60 02 7f 7f 01 7f 60 01 7f 00 60 01 7f 01

 ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^

00000020 7f 03 07 06 01 02 00 03 04 00 04 05 01 70 01 02

 ^^

The byte is the start of a section, which composes binary format of
WebAssembly. The starting byte of a section represents the section type,
and the next byte would be the length of the section. You may refer to the
following table for more possible values.

Table 1.1 : WebAssembly Module sections

Sections usually start with 01 – type section, in this section, .wasm defines
signatures of functions, or type information. In the first line of the first
code discussed in this chapter, 0x01 flags the start of the type section, and
the following byte 0x17 indicates that this section has length 23
(excluding type byte and length byte) till byte 0x20. The next byte 0x05
tells us that there are five functions, so we could find 5 0x60 following:

00000010: 00 01 7F 60 00 00 60 02 7F 7F 01 7F 60 01 7F 00

 ^^ ^^ ^^ ^^ ^^ ^^

Bytes 0x16 to 0x1b defines a function (0x60) with 2 (0x20) i32 (0x7F)
parameters, and 1 (0x01) i32 (0x7F) output, and this would be our
function that calculates the multiplication, and the function signature is
exactly two integers (int a, int b) and an integer result (int c).

We don't have anything imported here, so there is no import section. And
we jump to function section (0x03):

00000020 7f 03 07 06 01 02 00 03 04 00 04 05 01 70 01 02

^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^

This section would be of length 7 (0x07). The next byte indicates there are
6 (0x06) function indices, and the array of indices is 1 (0x01), 2 (0x02), 0
(0x00), 3 (0x03), 4 (0x04), 0 (0x00):

00000020 7f 03 07 06 01 02 00 03 04 00 04 05 01 70 01 02
 ^^ ^^ ^^ ^^ ^^ ^^

00000030 02 05 06 01 01 80 02 80 02 06 09 01 7f 01 41 90

 ^^

00000030 02 05 06 01 01 80 02 80 02 06 09 01 7f 01 41 90

 ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^

00000030 02 05 06 01 01 80 02 80 02 06 09 01 7f 01 41 90
 ^^ ^^ ^^ ^^ ^^ ^^ ^^

00000040 88 c0 02 0b 07 80 01 08 06 6d 65 6d 6f 72 79 02

 ^^ ^^ ^^ ^^

The next is table section with id 4 (0x04) and length 5 (0x05), and it
defines the JavaScript objects mapping, for they could not be accessed by
WebAssembly directly and this helps to ensure that WebAssembly runs in
a safe sandbox environment. Followed by section with id 5, (0x05)
represents memory information, which defines the minimum and
maximum memory usage. After that would be the global section (0x06) of
length 9 (0x09), which defines 1 (0x01) global i32 (0x7f) variable and the
variable is mutable (0x01). We are familiar with the global variables
concept in many other advanced languages. This variable is initialized
with the following instructions (0x41 0x90 0x88 0xc0 0x02 0x0b):

00000040 88 c0 02 0b 07 80 01 08 06 6d 65 6d 6f 72 79 02

 ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^

00000050 00 0e 6d 79 4d 75 6c 74 69 70 6c 79 46 75 6e 63

^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^

00000060 00 01 19 5f 5f 69 6e 64 69 72 65 63 74 5f 66 75

 ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^

00000070 6e 63 74 69 6f 6e 5f 74 61 62 6c 65 01 00 0b 5f

^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^

00000080 69 6e 69 74 69 61 6c 69 7a 65 00 00 10 5f 5f 65

^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^

00000090 72 72 6e 6f 5f 6c 6f 63 61 74 69 6f 6e 00 05 09

^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^

000000a0 73 74 61 63 6b 53 61 76 65 00 02 0c 73 74 61 63

^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^

000000b0 6b 52 65 73 74 6f 72 65 00 03 0a 73 74 61 63 6b

^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^

000000c0 41 6c 6c 6f 63 00 04 09 07 01 00 41 01 0b 01 00

^^ ^^ ^^ ^^ ^^ ^^ ^^

Now comes the export section (0x07) with length 129 (0x80 + 0x01).
Contrary to the import section, it defines the functions, tables, memory, or
global variables that will be exported to the world of JavaScript. In we
have 8 (0x08) exported object. And if you look closer, you may notice that
bytes from 0x51 to 0x61 defines the multiplication function. To help you
find the function, we will demonstrate with the following code:

00000050 00 0e 6d 79 4d 75 6c 74 69 70 6c 79 46 75 6e 63

^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^

00000060 00 01 19 5f 5f 69 6e 64 69 72 65 63 74 5f 66 75

 ^^ ^^

The 5th (0x05) exported function is named 0x6d 0x79 0x4d 0x75 0x6c
0x74 0x69 0x70 0x6c 0x79 0x46 0x75 0x6e 0x63. And if you look them
up in the ASCII table, you will find out that the function name is The last
2 bytes claims that the exported object type is function (0x00) and the
index of the function is 1 (0x01):

000000c0 41 6c 6c 6f 63 00 04 09 07 01 00 41 01 0b 01 00

^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^

Since we compile the manual.cpp with the command –no-entry, we will
skip the start section (0x08) and jump directly to the element section
(0x09):

000000d0 0a 30 06 03 00 01 0b 07 00 20 00 20 01 6c 0b 04

 ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^

000000e0 00 23 00 0b 06 00 20 00 24 00 0b 10 00 23 00 20

 ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^

000000f0 00 6b 41 70 71 22 00 24 00 20 00 0b 05 00 41 80

 ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^

00000100 08 0b

 ^^ ^^

The code section (0x0a) defines 6 (0x06) functions. The first one takes 3
(0x03) bytes (0x03), has no (0x00) parameters and the next 2 bytes would
be the instructions code. You may guess, the next function takes 7 (0x07)
bytes and no parameters as well.

Now you have a basic understanding of the WebAssembly binary format.
Let's try to run manual.wasm manually in the browser.

Case With your favourite browser, open DevTools and switch to Console
tab. Enter the following code all in once, and it will print out a log says "3
* 4 = 12"

var array1 =

var array2 = Uint8Array.from(array1);

WebAssembly.instantiate(array2).then(({instance}) => {

 console.log(`3 * 4 = ${ instance.exports.myMultiplyFunc(3, 4)}`);

});

Figure Manually run WebAssembly

Case We will manipulate the manual.wasm a little, changing the function
name from myMultiplyFunc to And then the new bytes would be:

00 61 73 6d 01 00 00 00 01 17 05 60 00 01 7f 60

00 00 60 02 7f 7f 01 7f 60 01 7f 00 60 01 7f 01

7f 03 07 06 01 02 00 03 04 00 04 05 01 70 01 02

02 05 06 01 01 80 02 80 02 06 09 01 7f 01 41 90

88 c0 02 0b 07 80 01 08 06 6d 65 6d 6f 72 79 02

00 0e 79 6f 75 72 4d 61 6e 69 70 75 6c 61 74 65

00 01 19 5f 5f 69 6e 64 69 72 65 63 74 5f 66 75

6e 63 74 69 6f 6e 5f 74 61 62 6c 65 01 00 0b 5f

69 6e 69 74 69 61 6c 69 7a 65 00 00 10 5f 5f 65

72 72 6e 6f 5f 6c 6f 63 61 74 69 6f 6e 00 05 09

73 74 61 63 6b 53 61 76 65 00 02 0c 73 74 61 63

6b 52 65 73 74 6f 72 65 00 03 0a 73 74 61 63 6b

41 6c 6c 6f 63 00 04 09 07 01 00 41 01 0b 01 00

0a 30 06 03 00 01 0b 07 00 20 00 20 01 6c 0b 04

00 23 00 0b 06 00 20 00 24 00 0b 10 00 23 00 20

00 6b 41 70 71 22 00 24 00 20 00 0b 05 00 41 80

08 0b

Figure Run manipulated WebAssembly

Obviously, it will complain that myMultiplyFunc is not a function, for we
have changed it! You see, WebAssembly is like any other languages, and
emscripten is just one of the tools that could convert exist code to
WebAssembly. Compiled and instantiated by or
WebAssembly.instantiateStreaming as a preferred way, WebAssembly
runs in a safe sandbox in a more efficient and faster way.

WebAssembly in the future

The official is confident that everything that, if it is possible to be
compiled targeting WebAssembly, eventually, will be compiled to
WebAssembly. Now let us get back to the name --- WebAssembly, it is
designed for the web initially and that is true, but it is not limited to the
web, it could be running in the server as well. There is a possibility that
one day in the future, all the computing unit will be running
WebAssembly, regardless of the selected language, both for the client side
and the server side.

Popular WebAssembly languages

Many popular languages now have been supporting; for example C/C++,
Rust, C#, Golang and many more. Some of these supports are still under
experiments period. On the other hand, some are pretty mature to be used
in a production environment. In this book, we will choose C#, and if you
have been working with C# for years, luckily, build a WebAssembly
application will be a very smooth process for you. For those who never
deal with C# before, don't worry, we will cover all the knowledge and
concept you need to go through this book.

.NET Core

In the 2000s, .NET Framework was born. It is a reaction from Microsoft
to the world of Java. The initial name was Next Generation Windows
Services It is designed to be a new platform that could run not only one
selected language, but also in a secure and extensible way, and to adapt
the new world of web, which is born one or two decades earlier. With the
framework of ASP.NET, programmers can develop websites by easily
dragging and dropping web controls, and that greatly lowers the efforts
required to build an enterprise level website. Since then, C# and .NET
Framework has been evolving until 2015. In Build 2015, Microsoft has
pronounced a new .NET platform called .NET Core, which is available to
run on every platform including Windows, Linux and and the new world
of C# begins. C# is not closely coupled with Windows Server anymore. It
could be run in a docker container, more cloud native, and obviously,
more adapted to the new world of web, again.

ASP.NET Core

ASP.NET Core was born with the new .NET Core platform, which is
aimed to upgrade from the old ASP.NET. By providing a default and
replaceable dependency injection container, and a newly designed
middleware mechanism, it has quickly become a popular framework for
the microservice architecture. Basically, it is another normal .NET Core
console application, except that when it starts, it will run a few
configurations and listens for the http requests.

When to choose ASP.NET Core Blazor

ASP.NET Core Blazor was the framework that is aiming to build a client
web application running both on WebAssembly, Server or even native
apps, while enjoying the benefits of your existing C# ecosystem, for
example, your entity objects could be shared between client app and
backend services running on Linux servers, enjoying also the secure and
efficiency brought from WebAssembly, enjoying the interactions with
your application build upon C# instead of JavaScript and enjoying the web
standards that allows your application to be ran on any modern browsers,
even on a mobile device.

Blazor has been one of the top WebAssembly enthusiasts. There are many
active open sources projects that are contributing to the communities,
providing many UI Components and library available on your hand. And
this book will cover every corner you need to build your production-ready
Blazor application.

Conclusion

WebAssembly is crafted to be a target for programming languages
compiler to be target with. It is now one of the W3C standards with
HTML, CSS and making it available to run on the most modern web
browsers like Chrome, Edge, Safari, and not only on PC, but on mobile
devices as well.

WebAssembly is safe to be executed in a sandbox environment, while
maintaining efficiency and speed. It could be executed at a near native
speed. It is open and debuggable with help from its textual format. And
remember, despite having started with "Web", WebAssembly is not
limited to build web applications, it is possible to run WebAssembly with
backend services as well.

In the next chapter, you will be introduced to WebSocket, another
communication protocol between clients and servers other than http, and
SignalR, a .NET Core library that helps you build a WebSocket server
easily. We will also discuss three major blazor hosting models. Blazor
Server executes in the server based on the SignalR WebSocket connection,
while Blazor WebAssembly, as its name suggests, leverages
WebAssembly to run in the client environment. Blazor Hybrid will be
discussed which is a new model that combines blazor with native
application development so that you could share your code between
Blazor Server or Blazor WebAssembly and applications run in desktops or
mobile devices.

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:

https://discord.bpbonline.com

C

HAPTER
2

Choose Your Hosting Model

Introduction

In the last chapter, we briefly introduced ASP.NET Core Blazor. We got to
know that Blazor is becoming one of the most popular frameworks for
frontend developing. In this chapter, we will continue exploring and
comparing three different Blazor hosting models. One model, Blazor
WebAssembly, that you may guess from its name, is a framework
dedicated to WebAssembly. Let us deep dive into the different Blazor
hosting models.

Structure

In this chapter, we will discuss following topics:

Why WebSocket when we have HTTP

Using SignalR to create a WebSocket server

Blazor Server

Blazor WebAssembly

Blazor Hybrid

Objectives

This chapter aims to introduce one of the most important protocols that
will be used in Blazor, WebSocket, and the three common hosting models
provided by Blazor.

Before going into the world of hosting models, let us introduce a few
concepts that would be useful.

WebSocket

When we open a web page, for example, the browser actually sends a
GET HTTP request to one of Google's servers, and the server responds
with HTML, CSS or JavaScript that are required to render the page.
Before the existence of WebSocket, all the requests are imitated by the
client, or web browser. The server is not able to send a message to the
client initially. How could a web application, for example, a web chatting
room allows you to chat with your friends remotely, get the notification
that your friend sent you a message? The following image depicts the
protocol between clients and servers in the most natural way.

Figure HTTP Model

An easy way to implement this is that we could loop sending check
requests to the server with Ajax. The shorter the loop, the more "instantly"
you get your friends' messages. Imagine an app with hundreds of
thousands of users, each having hundreds of friends, millions of check
requests will be sent to the app servers, and that is only the requests to
check if there are new message yet. No reasonable servers could handle
such a large quantity of requests.

A request sent from the user's browser to the server, goes through the
internet by the HTTP protocol based on a TCP connection. After the
server responds to the request, it may or may not close the TCP
connection. If it decides to close the connection, the next time the client is
sending the request, a new TCP connection must be built again. It is called
a Request/Response

WebSocket is not entirely independent on the HTTP protocol. The client
first sends a hand shake request to the server based on the HTTP protocol,
with pre-defined standard headers, including WebSocket Key which is
used to identify the client and the server, version and sub-protocol that is
aligned between the client and the server so that they will both
communicate based on the aligned sub-protocol. If the server is
compatible with WebSocket, it will respond to the client with pre-defined
headers as well. The client will not communicate with the server again
until it validates the response from the server, and a WebSocket
connection is built upon. With this WebSocket connection, the client and
the server can talk in a bi-directional way. They both could actively send
message to the other as shown in the following figure:

Figure WebSocket model

Both HTTP and WebSocket protocols are based on TCP, so in general, it
would be easy for the server to support WebSocket, and the default ports
are also 80 and 443 for the WebSocket. WebSocket soon became popular
in online games, chat rooms, and many other applications which are
dependent on real-time or live interactions between users and the
platforms.

In general, almost all the real-time services are exchanging information on
the WebSocket connection, while the stateless HTTP protocol is more
popular with RESTful API services. A HTTP connection can be setup
directly, while the WebSocket must have a hand shake request first before
establishing the connection. HTTP protocol contains more overheads in
each transport than WebSocket. In addition, WebSocket supports sending
binary messages.

SignalR

WebSocket is apparently more popular in real-time applications. However,
implementing a WebSocket from scratch might be both complex and time-
consuming. In addition, some old version browsers might not have
WebSocket supported. You do not know how your server will respond to
these customers when you cannot force them to upgrade, they just cannot
upgrade due to irregularity or other reasons. It would just be more
complicated if your server tries to switch between long-polling and
WebSocket for different clients. It would be really great if there is a
library that can both help you build a real-time server based on WebSocket
while also being compatible with older browsers where long-polling is the
only solution to be real-timing.

Voilà! An open-source library emerges, and that is ASP.NET Core
SignalR library is an enabler that your application could leverage to send
messages in both directions, from the client to the server, invoking code
on the client side through remote procedure calls or the vice versa, and
most importantly, if your application is facing customers with older
browsers, SignalR automatically falls back to long-polling for you if
conditions were not met, and of course, you could customize the fallback
priorities. While sending messages simultaneously to all the clients, you
could also send a message to a specific client. Sounds familiar?
Nowadays, a typical instant chatting app would require those capabilities
to create chat rooms and private chats. SignalR is not only saving your
time on building a WebSocket server by yourself like many popular
WebSocket libraries for .NET or other languages, but also provides an

automatic fallback mechanism that saves you and your applications from
worrying about compatibilities.

Enough of talking, let us create a demo and see how easy it is to set up an
instant notification receiving boards with SignalR.

cd to a fold of your desire for this demo:

dotnet new webapi -o NotificationApp

code .\NotificationApp\

The command above creates a new ASP.NET Core Web API project and
opens the project by VS Code. Now, we will add the SignalR capabilities
to it.

cd .\NotificationApp\

Or open the Terminal window and it will be automatically located in the
project directory.

var builder = WebApplication.CreateBuilder(args);

var app = builder.Build();

app.MapGet("/", () => "Hello World!");

app.Run();

This is generated from the ASP.NET Core Web template and it can barely
do anything other than showing "Hello To provide a web page UI
interface to users, we create a folder called and add a file

html>

lang="en">

Notification App

This is an application to send/receive centralized notifications.

To serve this html page, ASP.NET Core provides two methods:
UseDefaultFiles() and The first method enables the default file path
mapping, and that is where we put the The second method enables the
server to host the static files, and index.html is one of them.

Now, the Program.cs looks like below, and we comment out the otherwise
it will show "Hello World!" by default.

var builder = WebApplication.CreateBuilder(args);

var app = builder.Build();

app.UseDefaultFiles();

app.UseStaticFiles();

// app.MapGet("/", () => "Hello World!");

app.Run();

Type dotnet run in your command line and it will say that the server is
listening on a certain port, and navigate to that URL in your web browser,
in this case it is which will render the HTML page.

Next, we will use SignalR to implement a WebSocket server that could
push notifications to clients.

First, we register SignalR into the container. A container in ASP.NET
Core is a box, or a provider that you could register multiple interfaces,
classes, or instances, and retrieve back later. It is an implementation of the
design pattern, inverse of control. The idea behind is that you are not
depending on a concrete implement layer anymore. Instead, you rely on a
contract or an interface that promises to fulfil your requirements.
Basically, we have two ways, inject and retrieve, to interact with the
container, or ASP.NET Core calls it ServiceProvider.

 ///

 /// Adds SignalR services to the specified cref="IServiceCollection" />.

 ///

 /// name="services">The cref="IServiceCollection" /> to add services
to.

 /// An cref="ISignalRServerBuilder"/> that can be used to further
configure the SignalR services.

 public static ISignalRServerBuilder AddSignalR(this
IServiceCollection services)

 {

 if (services == null)

 {

 throw new ArgumentNullException(nameof(services));

 }

 services.AddConnections();

 // Disable the WebSocket keep alive since SignalR has it's own

 services.Configure(o => o.KeepAliveInterval = TimeSpan.Zero);

 services.TryAddSingleton();

 services.TryAddEnumerable(ServiceDescriptor.Singleton,
HubOptionsSetup>());

 return services.AddSignalRCore();

 }

The static method like many other dependency injection extension
methods, put the required dependencies into the container, for example,
Generally, these registrations are structured under the namespace even
when you are creating your own libraries, for example, NLog takes this
pattern to register itself as well.

Now, we add SignalR to our notification application by simply calling

var builder = WebApplication.CreateBuilder(args);

// Add SignalR

builder.Services.AddSignalR();

var app = builder.Build();

IServiceProvider plays an important role in dependency injection in
ASP.NET Core. As the name of this interface suggests, it is a provider for
all kinds of services that are registered into the container:

namespace System

{

 //

 // Summary:

 // Defines a mechanism for retrieving a service object; that is, an
object that

 // provides custom support to other objects.

 public interface IServiceProvider

 {

 //

 // Summary:

 // Gets the service object of the specified type.

 //

 // Parameters:

 // serviceType:

 // An object that specifies the type of service object to get.

 //

 // Returns:

 // A service object of type serviceType. -or- null if there is no
service object

 // of type serviceType.

 object? GetService(Type serviceType);

 }

}

To take the dependencies out of the box, .NET defines a method
GetService in the interface It takes the Type required as a parameter and
will return the instance of that Type if possible.

Second, let us create a folder Hubs under root path and add a new file

using System.Collections.Concurrent;

using Microsoft.AspNetCore.Http.Features;

using Microsoft.AspNetCore.SignalR;

public class NotificationHub : Hub

{

 private static ConcurrentDictionarystring> Connections = new
ConcurrentDictionarystring>();

 public async Task Notify(string notification)

 {

 var caller = Clients.Caller;

 await Clients.All.SendAsync("onReceived", $"
{DateTime.Now.ToShortTimeString()}:
{Connections[Context.ConnectionId]} notifies: {notification}");

 }

 public override async Task OnConnectedAsync()

 {

 var feature = Context.Features.Get();

 Connections[Context.ConnectionId] = $"
{feature.RemoteIpAddress}: {feature.RemotePort}";

 await base.OnConnectedAsync();

 await Clients.All.SendAsync("onReceived", $"
{DateTime.Now.ToShortTimeString()}:
{Connections[Context.ConnectionId]} joins.");

 }

}

A hub in SignalR works as a communication manager. It defines the
methods that will be called by the clients, and calls the methods defined
by the clients. All the dirty work beyond that is handled by the SignalR
library as we introduced before. In this NotificationHub we define a
method Notify with a string parameter, and client will invoke this method
to send a notification to our centralized notification manager. Meanwhile,
the hub will invoke the function onReceived on the client side with one
parameter as well. Notice that we override OnConnectionedAsync from
the base Hub class to log the connected clients, so that we know where the
notification is coming from.

One more step on the server side, mapping our hub to the asp.net core
middleware pipelines by calling MapHub in

app.UseStaticFiles();

app.MapHub("/Notification");

We have completed the setup on the server side, let us turn to the client
side.

microsoft-signalr - Libraries - cdnjs - The #1 free and open source CDN
built to make life easier for developers

First, we update the index.html to import the SignalR JavaScript client
code and our customized signalr.min.js enable us to build a connection
with our SignalR server and send message back and forth. To allow users
notify all the clients, we add a text input element with id txt and a button
input with id Finally ad a bullets element to show all the notifications we
will receive.

html>

lang="en">

Notification App

This is an application to send/receive centralized notifications.

 type="text" id="txt" />

 type="button" id="btn" value="Notify"
/>

/>

id="notifications">

In we build a connection with URL defined in ASP.NET Core pipeline.
And in case the connection is break out, we restart the connection again in
the onclose handler. When a user click the Notify button, we will invoke
the method Notify defined in the which will in turn invoke the onReceived
handler and append a new item in the bullets list.

const connection = new signalR.HubConnectionBuilder()

 .withUrl('/Notification')

 .configureLogging(signalR.LogLevel.Information)

 .build();

async function start() {

 try {

 await connection.start();

 console.log('SignalR Connected.');

 } catch (err) {

 console.log(err);

 setTimeout(start, 5000);

 }

};

// Listen for `DOMContentLoaded` event

document.addEventListener('DOMContentLoaded', (e) => {

 document.getElementById('btn').addEventListener('click', send);

});

async function send(e) {

 const message = document.getElementById('txt').value;

 console.log(message);

 try {

 await connection.invoke('Notify', message);

 } catch (err) {

 console.error(err);

 }

}

connection.on('onReceived', (message) => {

 const li = document.createElement('li');

 li.textContent = message;

 document.getElementById('notifications').appendChild(li);

});

connection.onclose(async() => {

 await start();

});

// Start the connection.

start();

Now type dotnet run in the terminal to run the app. This time let's bring up
two browser clients and navigate to In the first browser window, you will
see two clients joining messages. Try send notifications in these two
browsers and the will both get notified. Refer to Figure

Figure Notification App

We are using Microsoft Edge Version 104.0.1293.46 on Windows 11 and
it supports WebSocket, so SignalR will utilize WebSocket and RPC to
implement these notifications. While in your case, if you are using an
older browser that does not support WebSocket, you will notice that you
are able to get notifications as well since SignalR can fallback
communication strategies automatically.

Blazor Server

All different blazor hosting models leveraged Razor components (We will
explain more in Chapter Implementing Razor and Other And where the
components were hosted determines the hosting model. If the components
run on the server side, we call it Blazor Server. When we say components
run on the server side, it means that the app is executed in the ASP.NET
Core application, And Blazor Server heavily depends on SignalR to
update UI, handle event and execute JavaScript.

Let's create a Blazor Server app and see how SignalR helps here. Typing
the commands in your terminal to generate a new Blazor Server app in the
folder BlazorServerDemo

dotnet new blazorserver -o BlazorServerDemo

cd ./BlazorServerDemo

In you may find that one line code looks familiar, which we introduced in
the SignalR section.

using Microsoft.AspNetCore.Components;

using Microsoft.AspNetCore.Components.Web;

using BlazorServerDemo.Data;

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.

Builder.Services.AddRazorPages();

builder.Services.AddServerSideBlazor();

builder.Services.AddSingleton();

var app = builder.Build();

// Configure the HTTP request pipeline.

If (!app.Environment.IsDevelopment())

{

 app.UseExceptionHandler("/Error");

 // The default HSTS value is 30 days. You may want to change this for
production scenarios, see

 App.UseHsts();

}

app.UseHttpsRedirection();

app.UseStaticFiles();

app.UseRouting();

app.MapBlazorHub();

app.MapFallbackToPage("/_Host");

app.Run();

It is reasonable to guess that MapBlazorHub will map an endpoint for the
BlazorHub class, just like what we did in our previous SignalR
notification application.

aspnetcore/ComponentEndpointRouteBuilderExtensions.cs at main ·
dotnet/aspnetcore

Check the open-source code on GitHub, and our assumption is verified.
MapBlazorHub has a few overloads that will finally map the class
ComponentHub to the default URL And it can be easily proved if you
start the BlazorServerDemo application, browse to the home page and
switch to the Console tab in the developer tools. The console log says
Information: Normalizing '_blazor' to Another evidence is that when we
register blazor into the container, the open-source code shows that it is

calling the method AddSignalR under the hood to register SignalR as
well.

It is worth pointing out that while the application is running on the server,
a circuit, represented the connection between a client and the server is,
persisted until disconnection. Each connection established with the server
will open a new circuit, and that includes when you open a new browser to
the same page. The circuit will be closed when user closes a page or
navigates to the external URL. And even better, you can inherit the
CircuitHandler to customize the lifecycle handlers for the circuits. By
taking notes of each connected client like we did in the SignalR example,
you can show how many clients are reading your blogs or watching
videos.

You usually choose Blazor Server if you want to take advantage of the
.NET ecosystem, for example, .NET API, libraries, or tool chains. In
addition, with Blazor Server you release the clients from downloading
heavily as compared to Blazor WebAssembly. On the other side, since the
application is running on the server, all the client interactions will be
handled by your server as well, and that would definitely hurt your
server's performance, and you can't even leverage CDN to boost static
resource loading.

Blazor WebAssembly

Blazor WebAssembly on the other hand, is running in the web browser on the
client side. It is based on a .NET WebAssembly runtime, and it will be
downloaded by the browser for the very first visit. Unlike Blazor Server, all
the events, or UI interactions are running on the client threads.

Let's take the default Blazor WebAssembly app as an example. We create a
demo app with the following commands:

dotnet new blazorwasm -o BlazorWebAssemblyDemo

Then in the folder files similar to Figure will be generated:

Figure Code generated by dotnet new

Then run another command in BlazorWebAssemblyDemo to run the Balzor
WebAssembly application:

dotnet run

Browse to the URL displayed in your Terminal and open up the network tab
in DevTools, and you should see many dotnet libraries are being sent to the
client as shown in Figure

Figure dotnet libraries sent to clients

Some of these are exactly the same libraries that are normally required when
you run a local dotnet console application, such as System.IO.dll, while
others are dedicated for a Blazor application, such as
Microsoft.AspNetCore.Components.WebAssembly.dll. When you run a local
console application, those dll libraries are consumed by a .NET runtime.
Similarly, Blazor WebAssembly provides such a runtime, sent to the client as
well in Figure and this runtime makes it possible to consume unchanged
dotnet libraries just as in a console application.

As we introduced in the last chapter, the wasm code is initiated by In this
JavaScript file, it wraps a method to call the recommended
WebAssembly.instantiateStreaming and falls back to array instantiation.

Here, we've picked up the core code to help you understand the process so
that you can build a better connection with the WebAssembly we introduced
in the last chapter:

await async function (e, t) {

 if ("function" == typeof WebAssembly.instantiateStreaming)

 try {

 return (await WebAssembly.instantiateStreaming(e.response,
t)).instance

 } catch (e) {

 console.info("Streaming compilation failed. Falling back to
ArrayBuffer instantiation. ", e)

 }

 const n = await e.response.then((e => e.arrayBuffer()));

 return (await WebAssembly.instantiate(n, t)).instance

}(t, e)

Other than the WebAssembly loading, let's take a closer look at the starting
point of a Blazor WebAssembly application,

var builder = WebAssemblyHostBuilder.CreateDefault(args);

builder.RootComponents.Add("#app");

First, it creates a and it is responsible for configuring and creating a The next
line of code configures the RootComponent for the application, which is an
App component, followed by a parameter of CSS selector. It will select a
HTML element with id app as in index.html under the wwwroot folder:

html>

lang="en">

id="app">Loading...

id="blazor-error-ui">

 An unhandled error has occurred.

 href="" class="reload">Reload

This index.html works as a blueprint for the Blazor WebAssembly
application. It works the same way as any other web application. In the body
section, we defined a div element with id And the component added to the
RootComponents in builder will be inserted here.

In it defines two sections for found route and not found route, and intuitively,
they are for a defined route in your application and what a 404 response
should look like. We will discuss more about the Router component in a later
chapter. And in the project root folder, there is another file, It defines global
@using directive. Any directive added to this file applies to all the
components in the project folder.

You usually choose Blazor WebAssembly when you desire to have an
application that can work offline when there are no network connections. You
can also benefit from CDN distributing static resources, or even as a whole,
serving your applications. Blazor WebAssembly also helps to reduce the
server performance pressure since all the event handling, UI interactions and
heavy calculations are now the responsibility of the clients. In addition, the
applications could be installed as a progressive web app on the clients'
machines, and you can leverage all the capabilities of PWA, for example,
notification.

Blazor Hybrid

Blazor Hybrid has joined the blazor family recently. It is a hybrid way to
build native applications with HTML and CSS technologies. You will
unlock all the capabilities which are not available on the web-alone
platform, combined with .NET MAUI, WPF, and Windows Forms. We
will not cover Blazor Hybrid in the following chapters. But you are
encouraged to experiment with it in your own way, especially when you
have a production ready web applications that is built with blazor. It will
greatly reduce your workload when you are developing a corresponding
native app.

Conclusion

In this chapter, we begin with a protocol WebSocket. It is proposed to help
build a full duplex communication channel between the client and server.
It is very popular in real time web applications, for example, instant
messaging and gaming. Then we introduced a .NET library, SignalR. It is
aimed to help you build real time applications with high performances. We
continue this chapter by developing a demon on how clients can send
notifications to each other online.

Blazor Server is heavily dependent on SignalR to build connections with
clients, and all the handlers are running on the server side, while Blazor
WebAssembly offloads this work to the browsers. We understand the key
benefits of these two models. Blazor Hybrid is another hybrid way to
develop native applications based on web technologies, and it will overall
increase your productivity if you have a web based on blazor already, or
you want to develop an app targeting multiple platforms, including web,
desktop, and mobile at the same time.

In the next chapter, we will introduce the core building block in the world
of blazor --- Razor Component, and dive deep into how components are
implemented and how they can be combined to render UI, partial pages,
and layouts.

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:

https://discord.bpbonline.com

C

HAPTER
3

Implementing Razor and Other Components

Introduction

In this chapter, we will introduce Razor components and discuss one of
the special components, layout, which shares many common properties
with other components as well. We will jump into the detail of how a
component is implemented and how to use them on a page. In addition,
the community has been providing plenty of open-source libraries, and we
will take a look at them.

Structure

In this chapter, we will discuss the following topics:

Directives

One-way binding

Two-way binding

Cascading

Event handling

Lifecycle

Layout

Libraries

Objectives

In this chapter, we will understand the process of creating a customized
component and understand the binding between components and models
to create an interactive application.

We will then understand the event handling for components and know the
lifecycle of components to customize components' behavior. You will also
learn how to reuse components by layouts.

Starting from this chapter, we will build an e-shop web application step by
step, with the topics we discussed in each chapter, and eventually deploy it
on the cloud.

Regardless of which Blazor model you choose, Razor components will be
the common building blocks used to build your application ground up.

Razor components

Components are usually developed by the file with the extension It will be
your bricks when building the application house. Razor syntax is based on
both HTML and C#, while HTML defines how to render the components
and on the other hand, C# defines the logic of the components. Let's take
one of the simplest razor components as an example.

Before creating our first components, a blazor project is created by typing
dotnet new blazorwasm in your favorite Terminal. We'll choose Microsoft
Terminal here. Run the default application with dotnet run, and browse to
the webpage with port, in my case, it is https://localhost:7045 and you will
see a web page like shown in Figure

Figure Blazor WebAssembly home page

We will create a simple head component to replace Hello, world! with
This is my new head! First, we go to the shared folder under the root and
create a new file called

@head

@code {

 private string head = "This is my new head!";

}

Update the Index.razor under Pages folder to use the newly created
component:

@page "/"

Index

@*

Hello, world!
*@

/>

Welcome to your new app.

Title="How is Blazor working for you?" />

We commented out the old h1 label and replaced with our newly created
components. Now run the app again with dotnet run and refresh the
browser. You will notice that, on the home page, we have a header that
says, This is my new

Figure Home page with the new header

In razor component, we extensively use @ sign prefixed to a keyword
representing a directive or a directive attribute.

Directive

A directive changes how a component is parsed. Take our simple head
component MyHead as an example. Inside the h1 label, we have a @ sign
followed by the variable head. If we remove the @ sign, you will see
literally "head" in the home page.

In this section let's build an order model that users could update the count
of items in the cart.

First, we create a shop item model, and an order model, which contains
key information, for example, which item your customers are buying and
the numbers of these items:

namespace EShop.Models

{

 public class ShopItem

 {

 public string Name { get; set; }

 public string Description { get; set; }

 public double Price { get; set; }

 public ShopItem(string name, string description, double price)

 {

 Name = name;

 Description = description;

 Price = price;

 }

 }

}

The next model is It represents an item in the customers' shopping cart,
including how many of this specific item:

namespace EShop.Models

{

 public class CartItem

 {

 public ShopItem Item { get; set; }

 public int Count { get; set; }

 public CartItem(ShopItem item, int count)

 {

 Item = item;

 Count = count;

 }

 }

}

A final model is the A customer can manage to add all kinds of CartItem
in the

namespace EShop.Models

{

 public class Cart

 {

 public List Items { get; set; } = new List();

 public void Add(CartItem item)

 {

 Items.Add(item);

 }

 public void Remove(CartItem item)

 {

 Items.Remove(item);

 }

 public void Clear()

 {

 Items.Clear();

 }

 }

}

Next, we will create a Cart.razor page in the Pages folder to show the
CartItems customer added to the

@page "/cart"

Cart

Cart

class="btn btn-danger" @onclick="Buy">Buy

class="list-group">

@foreach (var item in _cart.Items)

{

class="list-group-item">

class="d-flex w-100 justify-content-between">

class="mb-1">@item.Item.Name

 3 days ago

class="mb-1">@item.Item.Description

class="d-flex flex-row mb-3">

 class="p-2 bi bi-dash-square" @onclick="()=>Remove(item)">

class="p-2">@item.Count

 class="p-2 bi bi-plus-square" @onclick="()=>Add(item)">

}

@code {

 private Models.Cart _cart = new Models.Cart();

 private void Buy()

 {

 _cart.Add(new Models.CartItem(new Models.ShopItem("T-shirt",
"One of the tops", 5), 1));

 }

 private void Add(Models.CartItem item)

 {

 item.Count++;

 }

 private void Remove(Models.CartItem item)

 {

 item.Count--;

 }

}

Directive Attribute

A directive attribute is mostly applied to a razor component and will affect
parsing or the functionalities. It is more like a booster to the razor
components.

One of the directive attributes that you might find extremely useful is It
builds a data binding between the view and the model behind the scenes.
When your application updates the model data, the frontend will render to
reflect the change. Reminds you of MVVM right?

One-way Binding

Blazor provides a data binding feature, and we can bind the user input to
our model.

For example, if a customer would like to change his item count in
shopping cart from 1 to 100, with our former implementation, he might
have to click on the add button for 99 times, which is definitely not a
friendly user experience. And we could use binding with an input element
so that this customer could enter any value he likes.

Replace the

label with a html element and bind it to To
verify that the model value is updated correctly, write a Print method to
log the count of the updated item:

@page "/cart"

@* some code *@

class="d-flex flex-row mb-3">

 class="p-2 bi bi-dash-square" @onclick="()=>Remove(item)">

 class="p-2" type="text"
@bind="item.Count" />

 class="p-2 bi bi-plus-square" @onclick="()=>Add(item)">

class="p-2">@item.Count

@* some code *@

Let's buy a T-shirt, change the count to 100 and we should be able to the
label next to the plus button is 100 now as well.

Binding Event

You may notice that in our last example, after changing the value of the
item count, only when you click on somewhere else, the next label will be
updated to the new value. But this may confuse our customers that if they
don't click on anywhere, the value will not be updated, and they will pay
for an order with undesired item numbers. It could be easily fixed with the
directive

This directive defines under which event trigger, the binding will update
value. By default, @bind:event is implicitly set to the onchange event.
Defined in the HTML standards, onchange will be triggered when two
conditions are met. The first is that content is changed, and the second one
is when the element lost focus. So, in our case, when a customer clicks
onelement and a, the item count input box will lose focus, and the
onchange event is triggered, leading to the model value updated behind
the scene.

To improve our user experience, we could set this bind directive on the
input element to be oninput event: class="p-2"
type="text" @bind="item.Count" @bind:event="oninput" which is similar
to the onchange event, and it will be fired immediately when the value
changes, meaning every time a customer press any key, it will be
triggered, and your binding model will be updated more frequently. It is a
balance between the onchange or oninput event. If frequent updates fired
by the oninput event will be a performance bottleneck for your
application, you might consider using the default onchange event.

Binding Format

Another useful binding directive might be It defines the format to display
the binding model. For example, our product owner decides to display an
update time for each item in the cart with customized format, showing
either when the item was put in the cart or when the item count was
updated.

To show the time, we will add a DateTime property UpdateTime to the
CartItem model and update it when the Count changes:

namespace EShop.Models

{

 public class CartItem

 {

 // some code

 private int _count;

 public int Count

 {

 get => _count;

 set

 {

 _count = value; UpdateTime = DateTime.Now;

 }

 }

 public DateTime UpdateTime { get; set; } = DateTime.Now;

 // some code

 }

}

And bind the UpdateTime to a readonly
element on the Cart razor page:

@* some code *@

class="d-flex w-100 justify-content-between">

class="mb-1">@item.Item.Name

 readonly @bind="item.UpdateTime">

@* some code *@

When the format directive is not set, the application web page will display
the default DatetTime string:

Figure 3.3: Default DateTime format

To match product owner's requirements, we could add a format directive
to the element, readonly @bind="item.UpdateTime"

@bind:format="HH:mm:ss"> and it will only display time but no date anymore:

Figure Customized DateTime format

As of the time of writing, format directive only supports DateTime
expressions. To display more value formatting, developers have to add a
customized string property for binding purposes.

Unparsed value

You might think of a question, what if customers enter a string instead of a
number for the item count. And the truth is, binding directives will revert
the value back to the last one automatically. In our example, we bind the
value to the Count property of type int, and if you enter 10 first, and keep
typing "H" on your keyboard, it will stay with 10 and has no effect.

Another customized way to handle unparsed value is to bind with a string
value, and you can code the get and set methods to convert the binding
string to the model data in your own way or your own format, as bind
directive will call the get and set methods upon the binding event you
specified.

Two-way binding

You realize that the small label section is used for each item and now it
might be a good chance to refactor the Cart page and create a
CartItemCount razor component dedicated to for the item count.

Let's create a new folder Components and a customized component
CartItemCountComponent.razor under it:

class="d-flex flex-row mb-3">

 class="p-2 bi bi-dash-square" @onclick="Remove">

 class="p-2" type="text" @bind="Count"

@bind:event="oninput" />

 class="p-2 bi bi-plus-square" @onclick="Add">

class="p-2">@Count

@code{

 [Parameter]

 public int Count { get; set; }

 public void Add()

 {

 Count++;

 }

 public void Remove()

 {

 Count--;

 }

}

Note that we add a Count property and a Parameter attribute with it. This
Parameter attribute tells blazor that Count will be exported as a parameter
that can be bind to just like any other HTML attribute.

The cart page will also be updated accordingly to use our newly created
component:

@page "/cart"

@using EShop.Components;

Cart

Cart

class="btn btn-danger" @onclick="Buy">Buy

class="list-group">

@foreach (var item in _cart.Items)

{

class="list-group-item">

class="d-flex w-100 justify-content-between">

class="mb-1">@item.Item.Name

 readonly @bind="item.UpdateTime"

@bind:format="HH:mm:ss">

class="mb-1">@item.Item.Description

 Count="@item.Count" />

}

@code {

 private Models.Cart _cart = new Models.Cart();

 private void Buy()

 {

 _cart.Add(new Models.CartItem(new Models.ShopItem("T-shirt",
"One of the tops", 5), 1));

 }

}

Run the EShop application, buy a T-Shirt and try to update the item count.
The label next to the input element is updated as well, however, there is a
bug if you look closely, the updated time element does not sync with your
typing. It never updates!

All we did is, in general, move the code from the page to a razor
component that is used by this page, and the count label is showing the
correct number, which means that the count does update. Now let’s take
one step back and check our code where to update the Updated Time. We
assign a new value to the UpdateTime property when the Count of
CartItem is updated, and that gives us two potential reasons why the time
is not displaying correctly in the browser. The first one is that we did not
actually set the Count property, and the other one is that we updated the
time but failed to render it. My bet is on the first one, and it can be easily
proved. In the set method, we can add one line of code to print a log in the
console, and set a debug breaking point on the set method. Now we run
the application and enter some value in the input element. Neither the
breaking point is hit nor the console prints

That is the essential difference between one-way and two-way binding
directives. In one-way binding, we pass the data into the razor components
as a parameter. But no matter how the components update the parameter,
the world outside of the components will not be notified, and that explains
why the time is never updated any more.

To fix this, we will officially introduce the two-way binding. And let's
modify the CartItemCount razor component first.

class="d-flex flex-row mb-3">

 class="p-2 bi bi-dash-square" @onclick="RemoveAsync">

 class="p-2" type="text" value="@Count"

@oninput="OnInput" />

 class="p-2 bi bi-plus-square" @onclick="AddAsync">

class="p-2">@Count

@code{

 [Parameter]

 public int Count { get; set; }

 [Parameter]

 public EventCallback CountChanged { get; set; }

 public async Task AddAsync()

 {

 Count++;

 await CountChanged.InvokeAsync(Count);

 }

 public async Task RemoveAsync()

 {

 Count--;

 await CountChanged.InvokeAsync(Count);

 }

 public async Task OnInput(ChangeEventArgs args)

 {

 if (args.Value is null ||
string.IsNullOrWhiteSpace(args.Value.ToString()))

 {

 Count = 1;

 }

 else

 {

 Count = int.Parse(args.Value.ToString());

 }

 await CountChanged.InvokeAsync(Count);

 }

}

There are a few high-lights in this version of CartItemCount component.
The first is that we provide an EventCallBack event. With the Parameter
attribute, this is the event that we expose to its' parent component. The
parent component will handle the notification event with the generic
payload to implement further logic.

In our example, we expose a CountChanged event, and we invoke this
event everywhere the Count value get changed. From the page side, we
upgrade the one-way binding to two-way binding as well, with the
following code, @bind-Count="item.Count" @bind-
Count:event="CountChanged" Unlike assigning item.Count to the Count
property directly, we use the bind directive to bind the Count property
with item.Count in two directions. If the value from the item.Count
changed, the child item's property will be updated as usual. However, this
time, if the child component's Count property is changed, since we invoke
the notification event every time, the parent page will also be notified, and
the set method of the CartItem model will be invoked as well, so that time
displayed on the top right corner will reflect the latest changes.

Pay attention to the syntax here. Component parameters bind in a parent
component using and {PROPERTY} represents the property to bind. In
our case, the property is with the Parameter attribute. You also must
implement an named by {PROPERTY}Changed with the Parameter
attribute as well. These two "Parameters", together with the @bind syntax
achieve the two-way binding between components.

Cascading

Passing parameters to low level components has been proved to be a
powerful tool to build up a system with different levels. It helps to
maintain clean code and clear business logic. But passing them just one
level down is simply not enough. Sometimes, we need to refer to the
context from more than one level up, as our application evolves, and as
more features or requirements emerge. Once we found ourselves in such a
situation with complex business rules, we will usually choose to refactor
our code to be more object orientated with more than one level hierarchy.

Based on this reason, the developing team decided to refactor this Cart
page once again. This time, we will build a dedicated Cart razor
component, which will use a few CartItem components to represent the
items customers selected for their cart.

A new challenge we are facing here is to take the data context from _dart
object to the components deep down, with Parameter attributes, we are
only allowed to pass the parameter one level down. To go further than
that, we will introduce another attribute, With CascadingParameter and we
could identify a uniformed data context throughout the components tree.
A typical example would be to define a general CSS style for all the
components in the hierarchy tree.

Our UI designed has defined a uniform fontsize for the EShop Cart page,
and we will pass this fontsize standard to all the components referenced:

@using Models

@Cart.User

class="list-group">

 @foreach (var item in Cart.Items)

 {

class="list-group-item">

class="d-flex w-100 justify-content-between">

class="mb-1" style="@FontSize">@item.Item.Name

 readonly @bind="item.UpdateTime"

@bind:format="HH:mm:ss">

class="mb-1">@item.Item.Description

 @bind-Count="item.Count" @bind-Count:event="CountChanged" />

 }

@code {

 [Parameter]

 public Cart Cart { get; set; }

 [CascadingParameter(Name = "FontSize")]

 public string FontSize { get; set; }

 [CascadingParameter(Name = "FontStyle")]

 public string FontStyle { get; set; }

}

Add the cascading properties to the CartItemCountComponent razor
component:

class="d-flex flex-row mb-3">

 class="p-2 bi bi-dash-square" style="@FontSize" @onclick="RemoveAsync">

 class="p-2" style="@FontSize font-style: italic;"

type="text" value="@Count" @oninput="OnInput" />

 class="p-2 bi bi-plus-square" style="@FontSize" @onclick="AddAsync">

class="p-2" style="@FontSize">@Count

@code{

 [Parameter]

 public int Count { get; set; }

 [Parameter]

 public EventCallback CountChanged { get; set; }

 [CascadingParameter(Name = "FontSize")]

 public string FontSize { get; set;}

 [CascadingParameter(Name = "FontStyle")]

 public string FontStyle { get; set;}

 @* some code *@

}

Define these CascadingValue in the most parent razor pages.

@page "/cart"

@using EShop.Components;

Cart

Cart

class="btn btn-danger" @onclick="Buy">Buy

Value="@_fontSize" Name = "FontSize">

 Value="@_fontStyle" Name = "FontStyle">

 Cart="@_cart" />

@code {

 private Models.Cart _cart = new Models.Cart("Brian");

 private string _fontSize = "font-size: 30px;";

 private string _fontStyle = "font-style: italic;";

 private void Buy()

 {

 _cart.Add(new Models.CartItem(new Models.ShopItem("T-shirt",
"One of the tops", 5), 2));

 _cart.Add(new Models.CartItem(new Models.ShopItem("Jacket",
"The most popular", 17), 1));

 }

}

The key idea is to wrap your components in a CascadingValue label. In
this label, you will define a data context that will be passed downward
throughout the whole components tree. Each child component, which is
intended to take the data context, can define a property with a
CascadingParameter attribute. If you have more than one you will give the
Name attribute a value, and wrap these CascadingValue one inside
another, and the child components will be placed in the most inside.
Components' CascadingParameter will also catch the data by assigning a
Name field.

In our example, we defined a universal fontsize and a universal fontstyle
in the page level, and we passed these standard styles into the tree. The
children are now also rendered with the new style. In general,
CascadingValue will be your best option to set up a global theme or style,
as the theme or style built in this way can take effect easily for your whole
application.

Event Handling

Another popular feature in component is event handling. In the world of
Blazor components, you can define an event using You've actually seen
this feature in the two-way binding section, where we notify the parent
component that data has been updated. Unlike the event keyword in
normal .NET world, in components, you define an event with the help of
the struct EventCallback can only be subscribed by one method, and this
will be the only one method that will be invoked, when we emit an event.
While in normal .NET, an event can be subscribed by multiple methods,
and these methods will be invoked together while emitting the event.

A new user story comes from our product owner. EShop will allow
customers to remove items from the card and record the log when an item
is removed, so that the business operation can analyze the data and
improve customers' experience.

Add an EventCallback OnCartItemRemoved to the CartComponent razor
component:

@using Models

@Cart.User

class="list-group">

 @foreach (var item in Cart.Items)

 {

class="list-group-item">

class="d-flex w-100 justify-content-between">

class="mb-1" style="@FontSize">@item.Item.Name

 readonly @bind="item.UpdateTime"

@bind:format="HH:mm:ss">

 class="p-2 bi bi-x-octagon-fill" @onclick="()=>Remove(item)">

class="mb-1">@item.Item.Description

 @bind-Count="item.Count" @bind-
Count:event="CountChanged" />

 }

@code {

 [Parameter]

 public Cart Cart { get; set; }

 [CascadingParameter(Name = "FontSize")]

 public string FontSize { get; set; }

 [CascadingParameter(Name = "FontStyle")]

 public string FontStyle { get; set; }

 [Parameter]

 public EventCallback OnCartItemRemoved { get; set; }

 private void Remove(CartItem item)

 {

 OnCartItemRemoved.InvokeAsync(item);

 }

}

We will pass an method as a delegate to the OnCartIteAlibaba and back:

@page "/cart"

@using EShop.Components;

Cart

Cart

class="btn btn-danger" @onclick="Buy">Buy

Value="@_fontSize" Name = "FontSize">

 Value="@_fontStyle" Name = "FontStyle">

 Cart="@_cart" OnCartItemRemoved="OnCartItemRemoved" />

@code {

 private Models.Cart _cart = new Models.Cart("Brian");

 private string _fontSize = "font-size: 30px;";

 private string _fontStyle = "font-style: italic;";

 private void Buy()

 {

 _cart.Add(new Models.CartItem(new Models.ShopItem("T-shirt",
"One of the tops", 5), 2));

 _cart.Add(new Models.CartItem(new Models.ShopItem("Jacket",
"The most popular", 17), 1));

 }

 private void OnCartItemRemoved(Models.CartItem item)

 {

 _cart.Remove(item);

 }

}

In the we expose an EventCallback if CartItem as a parameter, so the page
could call the component and assign a method to this callback just like any
other parameters we defined before. Later on, we could invoke this
callback in the child component at any time, given a CartItem instance as
the callback argument. In the method that subscribes, it will be executed
while we invoke the callback. In this way, we implemented the removing
of CartItem in the page, when we click on the remove button in the child
component.

Lifecycle

In a razor component, there are multiple virtual methods that we could
choose to override to alter the rendering behavior for this component.
These virtual methods are, in the lifecycle order, OnAfterRenderAsync
SetParametersAsync will wrap all the parameters set to this component in
the ParameterView object, and you can get the parameter by its name.
This is a good chance now to retrieve data from the backend API with
parameter values. Next, you will call the base in the base method
implementations, it invokes OnInitializedasync if this is the first time
creating this component instance, and then immediately invokes Till now,
you can get the component's state and parameters set.

Whenever you want to explicitly rerender a component, you can call
StateHasChanged to trigger the rendering. Blazor will then check with
This method returns a boolean value to inform Blazor whether a rendering
will take place or not. If you return false in this method, you will prevent
Blazor from rerendering this component, to improve users' experience and
build up a high-performance application. BuildRenderTree is another
virtual method you can override if no markup code has been written yet
for this component. In this method, you may define how to render the
component specifically by coding. Once Blazor completes the rendering,
OnAfterRenderAsync will be invoked, and it will now be safe to call your
ref component here. The last method in component lifecycle is Dispose if
the component implements IDisposable interface. When the component is
removed from the rendering tree, Blazor will invoke this method, and it
will be good chance for you to dispose all the resources.

Layout

With three default pages, and the Cart page we developed, there are a total
of four pages in our EShop application currently, and they all share the
same top head and side navigation bar. This is implemented by a layout in
Blazor. If you are building a complex web application, it tends to have
more than one page, and it is important to keep a consistent head or
navigation menu throughout your application. Layout can be displayed in
every page, and it saves you from duplicated code, and it keeps it easy to
maintain the shared consistency.

A layout is in fact a special component in Blazor. All the layouts will
inherit from the which inherits the same base class that a normal
component will inherit. It provides a special Parameter of type Body. In
your implemented layout, you can render the @body anywhere.
Therefore, it is likely that you will add top head and side navigation
menus in the layout, just like the default Blazor example and render the
body in an article element:

@inherits LayoutComponentBase

class="page">

class="sidebar">

 />

class="top-row px-4">

 href="https://docs.microsoft.com/aspnet/"
target="_blank">About

class="content px-4">

 @Body

To wrap contents in your layout, you need to declare where you want to
place your components by using the @layout directive.

Layouts can be nested just like normal components have child
components. To render a layout inside another layout, you must refer to
the parent layout in your child layout and render your content inside the
child layout.

Let's create one our own layout then. Under the Shared folder, create a
new file named

@inherits LayoutComponentBase

EShop Blazor Application

 @Body

We first create a new parent EShop layout, and in the second line of we
refer to the EShop layout by adding @layout To verify that we do have 2
layouts together, let's update ./App.razor and change the layout for
NotFound from @typeof(MainLayout) to

Now run the application, and you will not miss the extra label element
EShop Blazor Application on the top of the web pages. And if you browse
to an undeclared route, for example, the navigation menu will disappear
with only the EShop Blazor Application label left, which means not found
route will be rendered directly inside the new while Cart page is rendered
in the nested

Libraries

In the open-source communities, there are a number of popular Blazor
components libraries, that you could use in your project.

Fast-blazor

https://github.com/microsoft/fast-blazor

This is a Blazor component library that implements the Microsoft
FluentUI. It is lightweight, and compatible with .NET 6 applications.

MatBlazor

https://github.com/SamProf/MatBlazor

This library implements common components following material design
specification. It has a complementary demo websites and documentation.

Ant Design Blazor

https://github.com/ant-design-blazor/ant-design-blazor

Ant Design is an enterprise level design language by Alibaba and has a
strong ecosystem. This library contributes a Blazor implementation to the
Ant Design Community

BootstrapBlazor

https://github.com/dotnetcore/BootstrapBlazor

This is also an enterprise-class library. It is implemented based on the
popular Bootstrap styles.

Conclusion

In this chapter, we covered the basic concepts of components and built an
interactive shopping cart page with nested components and data binding
between components and models. We've learned how to pass data down
through multiple levels of hierarchies and handle the events emitted by the
component. We also introduced the lifecycle of a component and used a
special component, layout, to reuse existing components. Finally, we
quickly went through some popular Blazor components library in the
open-source community.

In the next chapter, we will discuss more about the mechanism behind the
components and layout and take some source code as examples to learn
the techniques to improve your applications' performance.

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:

https://discord.bpbonline.com

C

HAPTER
4

Advanced Techniques for Blazor Component Enhancement

Introduction

In the last chapter, we introduced the razor components as a core building
material for a Blazor application. In this chapter, by digging into the
source code, we will go through some more advanced ways to enhance
your components' features and performances.

Structure

In this chapter, we will discuss the following topics:

How to reference other components

How to preserve elements or components

How to template components

CSS Isolation

Objectives

In this chapter, we will be understanding the advanced topics around
Blazor components. For example, components reference and preservation.
We will understand the components template and css isolation as well to
help you better organize your code structure.

Component Reference

Sometimes, you may want to control other components in your own
component. In the world of HTML and JavaScript, you usually add an id
attribute to the element that will be manipulated. While in Blazor, there is
no easy way to get the element by its id in C# code. One way to solve the
problem is to use one of the directive attributes that we introduced in the
previous chapter.

@ref directive attribute allows developers to reference another
component, and, in this way, we could invoke the method just from the
referenced component instance. For example, we would like to check out
the items added to the shopping cart, and we can reference the
CartComponent and call the method Checkout from it, just like you call a
method from any other instance in normal C# code.

// some other code

 public void Checkout()

 {

 foreach (var item in Cart.Items)

 {

 Console.WriteLine($"Checkout {item.Count} {item.Item.Name}, the
total is {item.Count * item.Item.Price}");

 }

 }

First, we add a new Checkout method in the CartComponent source code.
This method will iterate through all the items in the cart and print out the
log displaying the counts, names and the total prices.

Next we add a @ref directive attribute to the CartComponent in the
CarPage.razor and use this component reference as if it is one of the
properties of this page class.

@page "/cart"

@using EShop.Components;

Cart

Cart

class="btn btn-danger" @onclick="Buy">Buy

Value="@_fontSize" Name = "FontSize">

 Value="@_fontStyle" Name = "FontStyle">

 @ref="cartComponent" Cart="@_cart"
OnCartItemRemoved="OnCartItemRemoved" />

class="btn btn-warning" @onclick="Checkout">Checkout

@code {

 private Models.Cart _cart = new Models.Cart("Brian");

 private string _fontSize = "font-size: 30px;";

 private string _fontStyle = "font-style: italic;";

 private CartComponent cartComponent;

 private void Buy()

 {

 _cart.Add(new Models.CartItem(new Models.ShopItem("T-shirt",
"One of the tops", 5), 2));

 _cart.Add(new Models.CartItem(new Models.ShopItem("Jacket",
"The most popular", 17), 1));

 }

 private void OnCartItemRemoved(Models.CartItem item)

 {

 _cart.Remove(item);

 }

 private void Checkout()

 {

 cartComponent.Checkout();

 }

}

Here, we place the business logic, in the razor component, but in practice,
you may want to add more interaction logic between users and the
application instead of business logic. Usually, business logic belongs to
the model layer.

Anyway, in our example, we have a public method in the and we use it in
the CartPage to display the cart detail to our customers. Before we add the
@ref directive attribute to the component, we merely depend on the
capabilities of the CartComponent by itself. Since we use the @ref
directive attribute to catch the reference of this component in the razor
page, we have more flexibility in controlling the behavior of the
component and hence be able to add more functionalities to the cart page.
It will be like calling a normal C# instance, and you can call any instance
member which is marked publicly accessible.

Components preserving

In a web application, it is very common to show a list of variable kinds of
data, or a table. It could be a table of employees' pay slips or last month's
sales revenue, or simply a list of forecasted weather for the next week.
Sometimes, these lists, or data are static. They remain the same through
the users' certain experiences. Sometimes, they are dynamic, and you must
keep refreshing the data, as a result, your web application has to keep re-
rendering itself, and it could consume a lot of resources if you have a huge
amount of data to be refreshed.

For example, you are developing a new feature of wish list. A wish list is
a placeholder that customers can save the item they like for later, and not
checkout for now. One common scenario in this feature is that customers
may frequently move items from cart to their wish list back and force
several times for some reasons while they are shopping. In such cases, the
cart item or wish list in your application will be re-rendered entirely in
conjunction with the frequency that a customer updates it. Especially,
when there are a large number of items in the list, there will be
performance downgrade, and this will obviously not be welcomed by
customers. It is now the developers' responsibility to bring up a solution to
boost the performance. Luckily, Blazor provides a directive attribute
@key to save your effort, and you won't have to manually control the re-
render algorithm to boost the performance.

Here, we create a new file WishListComponent.razor under the
Components folder and build a wish list component with the
corresponding models as well.

class="list-group">

 @foreach (var item in WishList!.Items)

 {

originalValue="@item.Item.Name">

class="list-group-item">

class="d-flex w-100 justify-content-between">

class="mb-1" style="@FontSize">@item.Item.Name

 readonly @bind="item.UpdateTime"

@bind:format="HH:mm:ss">

 class="p-2 bi bi-box-arrow-up" @onclick="()=>MoveToCart(item)">

class="mb-1">@item.Item.Description

 }

The corresponding file WishListComponent.razor.cs is created for the
code behind the component:

using Microsoft.AspNetCore.Components;

using EShop.Models;

namespace EShop.Components

{

 public partial class WishListComponent

 {

 [Parameter]

 public WishList? WishList { get; set; }

 [CascadingParameter(Name = "FontSize")]

 public string? FontSize { get; set; }

 [CascadingParameter(Name = "FontStyle")]

 public string? FontStyle { get; set; }

 [Parameter]

 public EventCallback OnMovingToCart { get; set; }

 private async void MoveToCart(WishListItem item)

 {

 await OnMovingToCart.InvokeAsync(item);

 }

 }

}

This time, we separate the component logic into a .razor.cs file. It is a
common pattern in developing WPF projects where .xaml file will be
mapped with .xaml.cs file. Blazor shares the same spirit here as well. The
WishListComponent is in fact a partial class inheriting ComponentBase
while partial of the class is UI, another part is pure C# code representing
the component logic. The wish list models are very similar to the cart and
will not be covered here.

Now, we can use the WishListComponent in the

@page "/cart"

@using EShop.Components;

Shopping here!

Shopping here!

class="btn btn-danger" @onclick="AddToCart">Add something to the cart

Value="@_fontSize" Name="FontSize">

 Value="@_fontStyle" Name="FontStyle">

Cart

 @ref="cartComponent" Cart="@_cart"
OnCartItemRemoved="OnCartItemRemoved"
OnMovingToWishList="OnMovingToWishList" />

Wish List

 @ref="wishListComponent" WishList="@_wishList"
OnMovingToCart="OnMovingToCart" />

class="btn btn-warning" @onclick="Checkout">Checkout

@* some code *@

And add the C# code to implement the item switch logic between cart and
wish list:

@* some code *@

@code {

 private const string USER = "Brian";

 private Models.Cart _cart = new Models.Cart(USER);

 private Models.WishList _wishList = new Models.WishList(USER);

 private string _fontSize = "font-size: 30px;";

 private string _fontStyle = "font-style: italic;";

 private CartComponent? cartComponent;

 private WishListComponent? wishListComponent;

 private void AddToCart()

 {

 _cart.Add(new Models.CartItem(new Models.ShopItem("T-shirt", "One
of the tops", 5), 2));

 _cart.Add(new Models.CartItem(new Models.ShopItem("Jacket", "The
most popular", 17), 1));

 _cart.Add(new Models.CartItem(new Models.ShopItem("Sun glasses",
"On sale", 8), 3));

 }

 private void OnCartItemRemoved(Models.CartItem item)

 {

 _cart.Remove(item);

 }

 private void Checkout()

 {

 cartComponent!.Checkout();

 }

 private void OnMovingToCart(Models.WishListItem item)

 {

 _wishList.Remove(item);

 var cartItem = new Models.CartItem(item.Item, item.Count);

 _cart.Add(cartItem);

 }

 private void OnMovingToWishList(Models.CartItem item)

 {

 _cart.Remove(item);

 var wishListItem = new Models.WishListItem(item.Item, item.Count);

 _wishList.Add(wishListItem);

 }

}

We also updated the where cascaded style and fonts are shared between
the CartComponent and the Users could now click on the small moving to
wish list on the right top corner for each cart item and move it to the wish
list. Or click on the similar button on the right top corner to reverse it
back.

But we have not done any performance improvement yet. If a user moves
an item back and forth, performance will be hurt. Next, let's add the @key
directive attribute to each cart or wish list item div element to let the
Blazor know that these elements should be retained and how the cart items
are mapped to them.

@* some code *@

@foreach (var item in Cart!.Items)

{

class="list-group-item" @key="item.Item.Name">

@* some code *@

We could use any object to key the element or component. It could be
a string, a number, or an instance. And Blazor will retain the
relationship between the element and the cart item by its name. The
best practice is to use @key directive attribute where you are
developing a list component and you may use the item ID to key the
component. Not only to retain a mapping, don't forget that also marks
that the relationship should be disposed when there is an instance
replacement, and Blazor will re-render the front-end pages.

Template components

As your application grows, there will be many places where repeated
front-end code could be eliminated by using components. In some
cases, this would be an easy replacement. For example, when we are
developing a CartItemCountComponent is used to save the effort
allowing customers to update how many items they would like to buy.
Till now, we are dealing with components that are purely developed by
writing the HTML code explicitly. While in other scenarios, there might
be a chance that the consumer of your components will provide the
HTML to be rendered inside your component.

For example, in the you could wrap the contents inside the for each
loop to another component, and this new component must have the
capability to render the children html in the list group container.

One straight forward way to implement this is to pass the HTML code
as string, and the new component will have a string parameter, and
render the HTML explicitly as follows:

Here we create GroupContainer.razor under the Shared folder:

class="list-group-item">

class="d-flex w-100 justify-content-between">

class="mb-1" style="@FontSize">@Name

 @ChildContent

class="mb-1">@Description

GroupContainer.razor.cs are created here as well:

using Microsoft.AspNetCore.Components;

namespace EShop.Shared

{

 public partial class GroupContainer

 {

 [Parameter]

 public string? Name { get; set; }

 [Parameter]

 public string? Description { get; set; }

 [Parameter]

 public string? FontSize { get; set; }

 [Parameter]

 public RenderFragment? ChildContent { get; set; }

 }

}

Now we explicitly use this GroupContainer to make sure that every
item is rendered in the exact same container:

@using Shared

class="list-group">

 @foreach (var item in Cart!.Items)

 {

 Name=@item.Item.Name Description=@item.Item.Description>

 readonly @bind="item.UpdateTime"
@bind:format="HH:mm:ss">

 class="p-2 bi bi-box-arrow-down" @onclick="
()=>MoveToWishList(item)">

 class="p-2 bi bi-x-octagon-fill" @onclick="()=>Remove(item)">

 @* @bind-Count="item.Count" @bind-
Count:event="CountChanged" /> *@

 }

Another way to implement a HTML wrapper would be as shown in the
codes. It is a convention that when you define a property of type
RenderFragment with the name everything filled inside the component
will be rendered where you place the @ChildContent in the razor
component. In our example, @ChildContent is placed in a div element,
and when another team or some other developers utilize your
GroupContainer component, they add an input element and two icons in
it. These three added elements will be rendered exactly inside the div
element.

RenderFragment is a delegate that use a RenderTreeBuilder to build the
UI content, as it is defined as follows:

public delegate void RenderFragment(RenderTreeBuilder builder);

The preceding code shows the definition of which represents a method
with a RenderTreeBuilder instance as parameter to customize the
content, and there are a few common methods made public to
accomplish this objective.

Now that you know RenderFragment is a delegate, so we could try
writing some HTML elements in pure C# code.

First, we add a RenderFragment field in

using Microsoft.AspNetCore.Components;

namespace EShop.Shared

{

 public partial class GroupContainer

 {

 [Parameter]

 public string? Name { get; set; }

 [Parameter]

 public string? Description { get; set; }

 [Parameter]

 public string? FontSize { get; set; }

 [Parameter]

 public RenderFragment? ChildContent { get; set; }

 private RenderFragment _descriptionRF = (b) =>

 {

 b.OpenElement(0, "p");

 b.AddAttribute(1, "class", "mb-1");

 b.AddContent(2, "this is a description.");

 b.CloseElement();

 };

 }

}

Then we use this RenderFragment in GroupContainer.razor to
determine where it will be rendered:

class="list-group-item">

class="d-flex w-100 justify-content-between">

class="mb-1" style="@FontSize">@Name

 @ChildContent

 @_descriptionRF

In the preceding example, we first render @_descriptionRF to replace
the original p element showing the item description. It looks just like
the And yes, we created a RenderFragment in the corresponding
*.razor.cs file. Next to the ChildContent property, we add a private
RenderFragment called exactly the name in the razor file. Given a
lambda expression, b is the

In the OpenElement comes first, the same as you are writing the HTML
code, you would type

first. Next, we call AddAttribute to give the p element a class attribute,
just like you type class='mb-1' in HTML. The third line, obviously,
gives the p element a content to display. Finally, we end the lambda
expression by calling the same when you type the closing label

It is all very straightforward, but there is an important aspect that we
missed here, the integer parameter of these first three methods. The
integer here in fact plays an important role in the rendering tree. An

interesting thing is, when we re-number these integers in the lambda
expression, it still compiles and runs:

 // some code

 private RenderFragment _descriptionRF = (b) =>

 {

 b.OpenElement(-3, "p");

 b.AddAttribute(-2, "class", "mb-1");

 b.AddContent(-1, "this is a description.");

 b.CloseElement();

 };

 // some code

Figure Description RenderFragment

So, you see, the sequence can start from any number, as long as they are
incremental. One common mistake that developers may make is to use
auto incremented index:

 int index = 0

 b.OpenElement(index++, "p");

 b.AddAttribute(index++, "class", "mb-1");

 b.AddContent(index++, "this is a description.");

 b.CloseElement();

It seems more reasonable to use an integer tracking the sequence since
we are all developers. But the difference between Blazor and other UI
frameworks is that it uses this sequence to calculate the tree diff with a
linear algorithm. And it may work fine in this trivial example. Once you
have a more complicated scenario. Such as if branch, or loops, auto
generated sequence numbers may hurt your performance. The key here
is the algorithm Blazor takes and compares the old and new rendering
with the same sequence. It means for every same sequence number, if
the data comes with that number changes, Blazor is convinced that it
will re-render that data. In a loop for a list, it is very common that some
items will be removed or added in the middle based on your business
logic, and there will be re-rendering for every data comes after that

removing or adding, even though most of them remain the same,
because the corresponding sequence is changed if you use auto
increment numbers.

Another tip here is always remembered to call AddAttribute right after
the call of OpenElement or otherwise you will encounter the following
runtime exception:

Figure AddAttribute exception

Currently, this RenderFragment is static, and always renders the same
description. But we are required to display specific descriptions for
each item. So, a generic version of RenderFragment can be used here:

 // some code

 private RenderFragment _descriptionRF = (desc) => (b) =>

 {

 b.OpenElement(-3, "p");

 b.AddAttribute(-2, "class", "mb-1");

 b.AddContent(-1, desc);

 b.CloseElement();

 };

 // some code

And we pass the Description as a parameter to the

class="list-group-item">

class="d-flex w-100 justify-content-between">

class="mb-1" style="@FontSize">@Name

 @ChildContent

 @_descriptionRF(Description!)

Generic RenderFragment is a delegate as well, and it is defined to
return a normal It allows developers to render more dynamic content.
This generic argument provides a typed parameter to the
RenderFragment delegate and can be passed to the Inside the normal
RenderFragment lambda expression, developers can customize the
output with this parameter.

RenderFragment provides a way to manually generate HTML elements,
but it must be used with caution, otherwise it will easily overcome the
benefits it brings. It is recommended not to use RenderFragment unless
you have a very strong reason to do so.

CSS Isolation

CSS style is widely used throughout web applications. However,
there are some common challenging that developers are facing
nowadays. When your application grows larger and more complex, it
will be barely easy to maintain the style dependencies. It will be hard
to locate the style related bug on deeply nested elements.

Blazor CSS isolation aims to avoid these problems by defining a
style dedicated to only one component. And it is more than easy to
implement an isolated CSS style. You only need to name your css file
prefixed with the name of corresponding razor file and put them
under the same path.

For example, in we have a

element:

class="list-group-item">

class="d-flex w-100 justify-content-between">

@Name

 @ChildContent

@_descriptionRF(Description!)

And we simply create GroupContainer.razor.css under the Shared
folder with style for

element:

h2 {

 color: orange;

}

In this way, all the h2 elements in GroupContainer component will
have the same orange color. Super easy, right? If you inspect the
generated web page html, you may notice that:

b-xk4f1vd9ci>T-shirt

The h2 element was added as an attribute by the compiler in the
format of b-{10 In our case, it is and this attribute makes the selector
more specific. To prove this, we can bring up the DevTools and you
will find h2[b-xk4f1vd9ci] style in All the isolated css style will be
compiled into this file together:

Figure Compiled isolated CSS style

Since the css is isolated, it will not be applied to the child elements or
components. To allow children inheriting the same css style, you can
use ::deep to indicate that this style will apply to its children.

Let's conduct a small experiment here, adding both a parent header
and a child header:

 @* some code *@

 Name=@item.Item.Name Description=@item.Item.Description>

child header

 readonly @bind="item.UpdateTime"
@bind:format="HH:mm:ss">

 class="p-2 bi bi-box-arrow-down" @onclick="
()=>MoveToWishList(item)">

 class="p-2 bi bi-x-octagon-fill" @onclick="
()=>Remove(item)">

 @* some code *@

In we add a h2 element, since it is wrapped inside the this will be the
child header, in add the code

parent header

to the first line, as a parent header. Finally update CSS selector from
h2 to ::deep Now, run the application, and you will find that the child
header is orange, but the parent header is still black, CSS style does
not work!

Figure Inherited css

That's because the ::deep selector will not match those elements at
the root. So, you either wrap the parent header in a or add another h2
selector to the css file:

h2, ::deep h2 {

 color: orange;

}

This time, all the headers will be orange.

Conclusion

In this chapter, we explored more advanced topics of Blazor
components. Starting with components reference, we showed that
other components can be referenced just like a variable in plain C#
code by adding the @ref directive attribute to the target component.
Next, we discussed the technics to preserve the relationship between
components with its model. @key directive attribute helps to retain
the mapping and is encouraged to be used inside a list or a loop.

We also discussed how to manually generate front-end elements in
pure C# code. Remember to use RenderFragment only when
necessary. Finally, we talked about CSS isolation to avoid
dependency chaos and how this isolation is implemented by the
compiler.

In the next chapter, we will build a file uploading components with
the knowledge we have learned and discuss how to handle files from
or to customers. Some HTTP related topics will be covered as well,
through our way.

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:

https://discord.bpbonline.com

C

HAPTER
5

File Uploading in Blazor

Introduction

In the last chapter, we discussed some advanced topics about Blazor
components, including components reference, components
preserving, and component template. We also introduced the CSS
isolation technique to avoid overlap issues. In this chapter, we will
demo how you can interact with users through file uploading and
downloading for both Blazor Server and Blazor WebAssembly.

Structure

In this chapter, we will discuss the following topics:

File transfer on the internet

Upload a file

Upload files to other service providers

Security considerations and best practices

Objectives

In this chapter, first, we will be introduced to the protocols that are
commonly used to transfer files between clients through the internet,
and we will understand the differences between these two protocols,
HTTP and FTP. Next, we will understand the InputFile component
that is used in the Blazor Framework to allow users to upload their
files to the servers. We will be explained the detail through a EShop
feature where customers will upload photos taken from the bought
item and leave comments for that item.

Build comments for EShop

File sharing can be a verify useful way to communicate between
users and your web application or between users. If it is a social
media application, you might want to allow customers to upload their
favorite photos, so that other users can leave a comment or share that
photo. If it is a business intelligence application, customers may want
to download the data as an Excel file or a PDF report. In previous
chapters, we built an EShop application, and it would make our
product more competitive if the seller could sign in and post a
selected picture for the products on sale or customize a header picture
for the sellers' home page.

File transfer

There are two common ways to transfer files on the internet, HTTP
and FTP. HTTP stands for HyperText Transfer Protocol. As the name
suggests, HTTP deals with HyperText, which means, the client or
web browser will send a request to retrieve the HyperText from a
server. HyperText was introduced by Ted Nelson in 1956, and it is
still text, but a text with more information, linking other HyperTexts
by cross-referencing each other. These links between texts are like
edges in one huge graph in the world of internet with texts as the
nodes. These nodes are connected with each other, more or less
through the links. So that while you are at one node, you can almost
travel to any other node directly, or with only a few steps, unlike a
bus route, where you must keep traveling to the next stop linearly
until your destination, even though the stops in between are not
valuable to you at all.

And files are obviously part of the HyperText in our internet world.
HTTP is a one-way communication protocol as we discussed in
Chapter Choose Hosting for Blazor, and a client will initiate a request
to get the desired file from the HTTP server. Authentication is not
required to get the file, by its nature, through HTTP protocol,
although nowadays, developers are adding more and more
sophisticated signing-in mechanisms. But all these authentication
logics are not required by HTTP. They come from the business.

On the other hand, FTP is born with authentication. FTP stands for
File Transfer Protocol. You may tell from its name that this protocol
is born to share files. Users usually first provide credentials to log
into the server and get permission to upload or download files.
Unlike HTTP, FTP is more appropriate for large file transferring, and
it is widely used in large enterprises, universities, and institutions.

Nowadays, both HTTP and FTP get their security extensions to
HTTPS and FTPS, supporting Transport Layer Security. By
enhancing data transfer through encryption algorithms, HTTPS and
FTPS have become more and more popular, or even a new must-have
requirement in the internet world. For example, Google Chrome will
default to HTTPS starting from version 90. In this chapter, we will
focus on file transfer through HTTPS for the web application.

File upload

Both in Blazor Server and Blazor WebAssembly, we use an InputFile
component to catch the file from the user's upload. By default, this
component will be rendered into an input element. In our EShop
application, the product owner would like to add a new feature that
allows customers to upload their comments with photos for shopping
items.

First, let's build a shop-item page with customized components using
the techniques we learned from previous chapters.

First, we create a new file Comments.cs under the Models folder:

namespace EShop.Models

{

 public class Comment

 {

 public string Content { get; set; }

 public string ImageUrl { get; set; }

 public DateTime CreatedTime { get; set; }

 public Comment(string content, string imageUrl)

 {

 Content = content;

 // ImageUrl = imageUrl;

 ImageUrl = "https://ts1.cn.mm.bing.net/th/id/R-
C.699defcec77365c2dcd1bac50a789a46?
rik=sk9qvtl%2fpa%2f5eA&riu=http%3a%2f%2fcdn57.picsart.com%
2f179951678001202.jpg&ehk=SEq86wyqKmauSBKOyess7Qp6gtM
56dWGBQia7SwkJHg%3d&risl=&pid=ImgRaw&r=0";

 CreatedTime = DateTime.Now;

 }

 }

}

In this Comment model, we designed three properties and for now
we will use a picture from Bing Image to represent the shop item:

namespace EShop.Models

{

 public class ShopItem

 {

 public string Name { get; set; }

 public string Description { get; set; }

 public string ImageUrl { get; set; }

 public double Price { get; set; }

 public List Comments { get; }

 public ShopItem(string name, string description, double price)

 {

 Name = name;

 Description = description;

 Price = price;

 Comments = new List();

 }

 public void AddComment(Comment comment)

 {

 Comments.Add(comment);

 }

 }

}

We added a new property of the comments list in the ShopItem
model, and a method to add a comment for this shop item. The
comment model has three properties. One is the content of this
comment. Another is the image for this shop item that a buyer bought
from our EShop website, and this photo taken from the buyer can be
included with this comment. For now, we use a random photograph
from the Bing Image to display in the application. Later, we will
replace this default image with user uploaded one. The last one is an

auto-generated time of the comment creation to take note of when the
buyer left this comment.

Next, we create a new Blazor component file Comment.razor under
the Shared folder:

class="Container">

class="Content">@CommentModel.Content

 @if(!string.IsNullOrWhiteSpace(CommentModel.ImageUrl))

 {

 class="Image" src="@CommentModel.ImageUrl" />

 }

class="Time">@CommentModel.CreatedTime.ToString("yyyy-mm-
dd HH:MM:ss")

This component will display the content, image, and the created date
of a comment.

Then we create the corresponding C# code behind file
Comment.razor.cs to hold the model for this component:

using Microsoft.AspNetCore.Components;

namespace EShop.Shared

{

 public partial class Comment

 {

 [Parameter]

 public Models.Comment? CommentModel { get; set; }

 }

}

And a corresponding style file Comment.razor.css to give the
component a nicer look:

.Container {

 border-width: 0 0 1px 0;

 border-style: solid;

 border-color: black;

 margin-bottom: 15px;

}

.Content {

 margin: 1px;

}

.Image {

 width: 300px;

 margin-bottom: 15px;

}

.Time {

 font-size: 12px;

 color: gray;

 margin: 1px;

}

We build a shared component for the comment model here. It will
display the content of the comment, and the photo user uploaded,
together with when the comment was left. So that other users who are
interested in this shopping item can view the real photo taken by a
real buyer, instead of the photo that could be highly augmented by
the seller.

Then we will construct a new page to display the shop item and the
comments of it. Create a new file ShopItem.razor under the Pages
folder.@page

@using EShop.Shared;

class="ItemContainer">

@Item.Name

$ @Item.Price

@Item.Description

class="ItemDisplay">

 src="@Item.ImageUrl" />

class="NewComment">

 type="text" @bind="Content"/>

class="btn btn-primary NewCommentBtn" @onclick="AddComment">Leave a
comment

class="Comments">

Comments

 @foreach(var comment in Item.Comments)

 {

 CommentModel="@comment" />

 }

Customers will be able to see the name, price, and description of the
selected shop item on this new page, and we use the newly created
Comment component in a foreach loop to list all the comments for this
item.

In the corresponding C# code behind file a model of the ShopItem will
be held and we provide a method AddComment so that customers can
click on the button to add their own comments:

namespace EShop.Pages

{

 public partial class ShopItem

 {

 public Models.ShopItem Item { get; }

 public string? Content { get; set; }

 public ShopItem()

 {

 Item = new Models.ShopItem("T-shirt", "The best ever with
lower price!", 19.9);

 Item.ImageUrl = "https://ts1.cn.mm.bing.net/th/id/R-
C.614bdee2065be0f1976bdf839c725e26?
rik=EJ2vSWnKs9a9vQ&riu=http%3a%2f%2fclipart-
library.com%2fimg%2f828773.png&ehk=avi5QwUJFS0v4Qtu8ggI5Ar
iopp4uJwf7r5QlOnJQ0o%3d&risl=&pid=ImgRaw&r=0";

 }

 private void AddComment()

 {

 System.Console.WriteLine("AddComment");

 if (string.IsNullOrWhiteSpace(Content))

 {

 return;

 }

 var comment = new Models.Comment(Content!, "");

 Item.AddComment(comment);

 Console.WriteLine(Content);

 }

 }

}

And a CSS file ShopItem.razor.css to make the page looks nicer and
make the layout more concise:

.ItemContainer {

 display: flex;

 flex-direction: column;

 align-items: center;

}

.ItemDisplay {

 display: flex;

 justify-content: space-around;

}

.NewComment {

 display: flex;

 flex-direction: column;

 width: 300px;

 margin-top: 20px;

 align-items: flex-start;

}

.NewCommentBtn {

 margin-top: 10px;

}

.Comments{

 margin-top: 20px;

}

Next, we build a new page for displaying shopping items. It shows the
shopping item title with its price and description. On the left, you will
see a graph provided by the seller, and on the right-hand side, customers
can leave a comment on the item. For now, we do not implement an
authentication mechanism, and we obviously do not verify the user to
be the one that bought this T-shirt before. So basically, anyone can leave
that comment. We will build an authentication and authorization system
in a later chapter. We will just skip that part and focus on this chapter's
topics here. Refer to the following figure:

Figure ShopItem page

And finally, we added the new page to the navigation menu in
NavMenu.razor under the Shared folder so that users can navigate the
showing page with an easy click on the left navigation bar:

@* some code *@

class="nav-item px-3">

 class="nav-link" href="cart">

 class="oi oi-list-rich" aria-hidden="true"> Cart

class="nav-item px-3">

 class="nav-link" href="shop-item">

 class="oi oi-list-rich" aria-hidden="true"> ShopItem

@* some code *@

The skeleton of a shopping item displaying page is almost done. Except
for the image uploading part. We will implement that now and see how
the InputFile component that comes with Blazor can help us to achieve
that.

We will remove the hard coded ImageUrl value and use the parameter
from the constructor in

// some code

 public Comment(string content, string imageUrl)

 {

 Content = content;

 ImageUrl = imageUrl;

 CreatedTime = DateTime.Now;

 }

// some code

Add the InputFile component in ShopItem.razor page and assign the
method UploadImageAsync to handle the OnChange event of the
InputFile component:

 @* some code *@

 type="text" @bind="Content"/>

 OnChange="@UploadImageAsync" />

class="btn btn-primary NewCommentBtn" @onclick="AddComment">Leave a
comment

 @* some code *@

Write the method UploadImageAsync in Developers can read the file
stream through the InputFileChangeEventArgs parameter and convert it
to a Base64 string:

using Microsoft.AspNetCore.Components.Forms;

namespace EShop.Pages

{

 public partial class ShopItem

 {

 public Models.ShopItem Item { get; }

 public string? Content { get; set; }

 private string _base64Image = string.Empty;

 public ShopItem()

 {

 Item = new Models.ShopItem("T-shirt", "The best ever with
lower price!", 19.9);

 Item.ImageUrl = "https://ts1.cn.mm.bing.net/th/id/R-
C.614bdee2065be0f1976bdf839c725e26?
rik=EJ2vSWnKs9a9vQ&riu=http%3a%2f%2fclipart-
library.com%2fimg%2f828773.png&ehk=avi5QwUJFS0v4Qtu8ggI5Ar
iopp4uJwf7r5QlOnJQ0o%3d&risl=&pid=ImgRaw&r=0";

 }

 private void AddComment()

 {

 System.Console.WriteLine("AddComment");

 if (string.IsNullOrWhiteSpace(Content))

 {

 return;

 }

 var comment = new Models.Comment(Content!,
_base64Image);

 Item.AddComment(comment);

 Console.WriteLine(Content);

 }

 private async void UploadImageAsync(InputFileChangeEventArgs
args)

 {

 using var stream = args.File.OpenReadStream();

 byte[] buffer = new byte[stream.Length];

 await stream.ReadAsync(buffer, 0, buffer.Length);

 _base64Image =

 }

 }

}

Now, run the application, go to the shop-item page and open the
DevTools. In the Elements tab you will see HTML similar to Figure

Figure InputFile render to HTML

InputFile component will be rendered to an input element with the type
attribute of To allow users to upload more than one file at once, you
may add the attribute multiple to it. OnChange of the InputFile
component was assigned a method with the parameter of type
InputFileChangeEventArgs to handle the file(s) users uploaded.

We first call OpenReadStream to read from the uploaded image stream.
By default, an exception will be thrown if the file is larger than 500KB.
To override this behavior, you may provide a number to
maxAllowedSize parameter of OpenReadStream method explicitly. In
fact, it is not recommended to read the uploaded stream into memory
directly, but for demo purposes, we are not following that advice here.
But you should avoid that in your production code. And since we will
cover saving data through EF core in the future chapter, we are only
converting the uploaded image into a static base64 string to display on
the web page. ContentType we used in the example, are the standard
MIME type that is widely used in the browser. We rely on this type to
convert the stream to a correct bas64 string. When uploading multiple
files, you may iterate through the result of the method GetMultipleFiles
from Each of them can be handled the same as the File property.

Tips

When you are expecting an image uploaded from users, just like the
comment example above, you may find another method helpful.

Modify the method UploadImageAsync in ShopItem.razor.cs to use a
new method RequestImageFileAsync on the IBrowserFile type:

 @* some code *@

 private async void
UploadImageAsync(InputFileChangeEventArgs args)

 {

 var file = await
args.File.RequestImageFileAsync(args.File.ContentType, 300, 500);

 using var stream = file.OpenReadStream();

 byte[] buffer = new byte[stream.Length];

 await stream.ReadAsync(buffer, 0, buffer.Length);

 _base64Image = $"data:{file.ContentType};base64,
{Convert.ToBase64String(buffer)}";

 }

 @* some code *@

RequestImageFileAsync may help you to resize the image from
uploading or converting to another format when you provide a
specific format. However, it should be noted that there is no
guarantee that the converted IBrowserFile will be an image, or even
that the conversion can be processed. Since the conversion is running
in the JavaScript runtime, you may find it most suitable to call this
method when you are building a Blazor WebAssembly application.

To avoid malicious attacks, first, scan, check, and validate all the
files that are not provided by yourself before you work on them. In
addition, you may also want to upload the customers' files from the
client browser directly to a trusted third-party storage service. For
example, Azure Storage is most appropriate for these situations, so
that your application can safely process the file as simply a proxy and
call the external storage services when you are required to show or
use the files. The detail on how to upload to third parties will not be
covered in this book. But since you are writing C# code, which is the
benefit when you choose to build your web application with Blazor,
you can investigate the third-party documents for backend code, and
we hope they have a C# example. And for Azure, you are promised
that they have one.

Finally, it is worth limiting the number of files that a user can upload
at once. To achieve that, simply pass an explicit maximum when you
are calling The default number is 10 but remember to change it when
you have a less maximum in production.

Conclusion

In this chapter, we first introduced two popular protocols, HTTP and
FTP, that we could leverage to share files between your server and
clients. And then we went through a detailed example of how to
upload files in Blazor and discussed a few recommendations and
considerations that you may want to think about when dealing with
file uploading.

In the next chapter, we will discuss the other way around, how to
provide files to your customers in Blazor.

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:

https://discord.bpbonline.com

C

HAPTER
6

Serving and Securing Files in Blazor

Introduction

In the previous chapter, we introduced how a user can upload files to
Blazor by using the InputFile razor component and discussed how to
protect your application from cybersecurity attacks. Serving files to
clients is crucial to your application, especially for those applications
that are facing business customers. The requirements often include
sales data files generated periodically, statistics downloading to
understand more insights, or business intelligence reports. In this
chapter, we will talk about how you can provide users with files,
download files from your applications, and the security
considerations the same when users upload files.

Structure

In this chapter, we will discuss the following topics:

Middlewares in ASP.NET Core

Serve Static Files

Serve Dynamic Files

Security Advice

Objectives

In this chapter, we will understand how the requests are handled in
ASP.NET Core. The design of is the most important piece to get a
whole picture of the ASP.NET Core running mechanism. Next, we
will be introduced how to serve static files or dynamic files in Blazor.
Static files are simply static assets saved on the local hard drive while
dynamic files require to be generated runtime. We will then be
discussing some basic security rules to protect servers from attacks
when providing files to the clients.

Middleware

In Blazor Server, you could choose the static file middleware provided
by ASP.NET Core to server static files to your users. Middleware is a
new concept that was introduced into ASP.NET Core. It is a pipeline
system that is like an assembly line in a manufacturing factory. All the
requests from the clients will be fed into this pipeline system. Each
middleware works as a worker in the assembly line to create, remove or
modify requests and responses. Unlike an assembly line, the
middleware pipelines not only pass the requests coming to the next
middleware but also return the response to the previous one when it
reaches the last middleware in the pipeline systems. In addition, each
middleware may decide by itself whether or not to pass the requests to
the next one. While in a factory, a worker generally cannot control who
to work on the products next or where the products go in the assembly
line. Figure 6.1 shows the workflow of a request in the middleware
system:

Figure ASP.NET Core middleware system

ASP.NET Core comes with a lot of default middlewares, for example,
Static File Middleware is one of those. Other common middlewares
include Redirection, routing, authentication, authorization, and many
more. Even the API controller is implemented by middlewares. All the
middlewares follow the very same processing rule illustrated by Figure
These middlewares together synthesize the robust ASP.NET Core
application.

To learn more about the middlewares, let's get hands dirty by
implementing one of those. First, we need to create another EShop
project based on Blazor Server, and we moved the EShop with Blazor
WebAssembly to a subfolder WebAssembly. At the same time, we
create another subfolder, Server, which will contain the code for EShop

in Blazor Server mode. To create a Blazor Server EShop, change the
directory to the Server folder and run the command dotnet new
blazorserver -n EShop.Server -o . (don't miss out on the dot sign). Now
your code structure will look like the following code:

EShop

├───EShop.sln

└───.gitignore

└───.vscode

└───EShop.Server

├───Pages

├───Shared

├───wwwroot

├───EShop.Server.csproj

├───other folders and files

└───EShop.WebAssembly

├───Pages

├───Shared

├───wwwroot

├───EShop.WebAssembly.csproj

├───other folders and files

A Middleware can be implemented in two ways. The first and simplest
way is to code an inline middleware. If you want to log every request
coming from clients, you could easily use an inline middleware to
achieve that. We can add the inline middleware in Program.cs file under
the EShop.Server project to log every request:

using EShop.Server.Data;

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.

builder.Services.AddRazorPages();

builder.Services.AddServerSideBlazor();

builder.Services.AddSingleton();

var app = builder.Build();

app.Use(async (context, next) =>

{

 string log = $"
{context.Request.Scheme}://{context.Request.Host.Value}
{context.Request.Path.Value}";

 Console.WriteLine($"client requests: {log}");

 await next.Invoke();

});

// Configure the HTTP request pipeline.

if (!app.Environment.IsDevelopment())

{

 app.UseExceptionHandler("/Error");

 // The default HSTS value is 30 days. You may want to change this
for production scenarios, see https://aka.ms/aspnetcore-hsts.

 app.UseHsts();

}

app.UseHttpsRedirection();

app.UseStaticFiles();

app.UseRouting();

app.MapBlazorHub();

app.MapFallbackToPage("/_Host");

app.Run();

In the preceding code, we called the Use extension This method is used
to add an inline middleware delegate to the pipeline system, and we
passed a delegate to the method. The delegate has two parameters. The
first is a context of the type which contains all the information related to
the request, and the response as well. Another parameter is called next,
which is the next delegate that will be executed in the pipeline system.
It in fact points to the next middleware. So, all the middlewares are
chained like a linked list only that this list is bi-directional, requests
coming in and going out.

We print out the URLs that the clients requested in the debug console.
Showed in Figure apparently, the client first visited our application with
the http schema and was directed to port 5001 with a more secure https
schema. Thanks to the it adds a middleware to redirect http requests to
https and forced the clients to use https when they are visiting our

EShop application. After that, all the required static files and blazor
components were loaded:

Figure 6.2: Inline log middleware

If you have a more complicated middleware, you might want a
dedicated class to act as a middleware in the pipeline system. In fact,
there is no such middleware base class provided by the asp.net core
framework as long as a class meets two requirements. The first is a
public constructor of which the first parameter has the type of The
second is a public Invoke or InvokeAsync method of which the first
parameter has the type of For example, we could move our logger logic
into a class like the following code:

namespace EShop.Server;

public class LoggerMiddleware

{

 private readonly RequestDelegate _next;

 public LoggerMiddleware(RequestDelegate next)

 {

 _next = next;

 }

 public async Task Invoke(HttpContext context)

 {

 string log = $"
{context.Request.Scheme}://{context.Request.Host.Value}
{context.Request.Path.Value}";

 Console.WriteLine($"client requests: {log}");

 await context.Response.WriteAsync("hello world!");

 }

}

The preceding code shows an example of You may have more
parameters for the constructor or Invoke method, but make sure that
RequestDelegate or HttpContext comes first. This time in the
middleware class, we are not calling next.Invoke() to short circuit other

middlewares followed behind. In this way, we revert the request
handling direction and start to compose the response returned to the
client. And the middlewares before this LoggerMiddleware may choose
to alter the response when they see it necessary. Finally, the response
will be received by the client from the very first middleware that
handles the request.

To add this class of middleware into the pipeline system, we call the
UseMiddleware extension method in It will register a middleware to the
pipeline. Notice that the order we register a middleware is very
important here because if a particular middleware chooses to short-
circuit the request, all the middlewares registered after it will be ignored
and will not handle the request:

using EShop.Server;

using EShop.Server.Data;

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.

builder.Services.AddRazorPages();

builder.Services.AddServerSideBlazor();

builder.Services.AddSingleton();

var app = builder.Build();

app.UseMiddleware();

// Configure the HTTP request pipeline.

if (!app.Environment.IsDevelopment())

{

 app.UseExceptionHandler("/Error");

 // The default HSTS value is 30 days. You may want to change this
for production scenarios, see https://aka.ms/aspnetcore-hsts.

 app.UseHsts();

}

app.UseHttpsRedirection();

app.UseStaticFiles();

app.UseRouting();

app.MapBlazorHub();

app.MapFallbackToPage("/_Host");

app.Run();

Figure Middleware short circuit

Figure 6.3 is a screenshot of our application when a user browses Since
the LoggerMiddleware short circuit the request pipeline, this time, it
will not show the familiar Blazor App home page with menus on the
left. Instead, a simple plain text response is returned from the

If we move the LoggerMiddleware registration after:

// some other code

var app = builder.Build();

// Configure the HTTP request pipeline.

if (!app.Environment.IsDevelopment())

{

 app.UseExceptionHandler("/Error");

 // The default HSTS value is 30 days. You may want to change this
for production scenarios, see https://aka.ms/aspnetcore-hsts.

 app.UseHsts();

}

app.UseHttpsRedirection();

app.UseMiddleware();

app.UseStaticFiles();

// some other code

Figure 6.4: Reorder LoggerMiddleware

Since LoggerMiddleware comes after when we browse to we are
redirected to the corresponding https schema endpoint,

Serve Static Files

By default, when you create a new Blazor Server or Blazor
WebAssembly application, serving static files is supported. But since
we short-circuit all the rest middlewares, let's allow the request to
move down through the pipeline system. We update the
LoggerMiddleware.cs to remove the short-circuit:

namespace EShop.Server;

public class LoggerMiddleware

{

 private readonly RequestDelegate _next;

 public LoggerMiddleware(RequestDelegate next)

 {

 _next = next;

 }

 public async Task Invoke(HttpContext context)

 {

 string log = $"
{context.Request.Scheme}://{context.Request.Host.Value}
{context.Request.Path.Value}";

 Console.WriteLine($"client requests: {log}");

 // await context.Response.WriteAsync("hello world!");

 await _next.Invoke(context);

 }

}

So, we call the Invoke method on the RequestDelegate to pass the
request to the next middleware:

world!

-- this is a static file.

And we add a text file hello.txt under the wwwroot folder with the
content above. All the files under wwwroot will be served, and you

may already find out that all the CSS files are placed under this
folder as well:

Figure Serve static files under wwwroot

Now you start the server and browse to and the web browser will
display the content from the file Similarly, if you navigate to a CSS
file, it will display the style configuration as well.

Sometimes, your files may not be under this default wwwroot files.
For example, you have a dedicated assets folder to keep all the
graphs or logos together. And the browser will complain that such a
file resource cannot be found, which is a 404-error status code.

To support the files under any customized directory, you may config
the UseStaticFiles middleware in Program.cs to achieve that:

using EShop.Server;

using EShop.Server.Data;

using Microsoft.Extensions.FileProviders;

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.

builder.Services.AddRazorPages();

builder.Services.AddServerSideBlazor();

builder.Services.AddSingleton();

var app = builder.Build();

// Configure the HTTP request pipeline.

if (!app.Environment.IsDevelopment())

{

 app.UseExceptionHandler("/Error");

 // The default HSTS value is 30 days. You may want to change this
for production scenarios, see https://aka.ms/aspnetcore-hsts.

 app.UseHsts();

}

app.UseHttpsRedirection();

app.UseMiddleware();

app.UseStaticFiles(new StaticFileOptions

{

 FileProvider = new PhysicalFileProvider(

 Path.Combine(builder.Environment.ContentRootPath,
"Assets")),

 RequestPath = "/assets-url"

});

app.UseRouting();

app.MapBlazorHub();

app.MapFallbackToPage("/_Host");

app.Run();

In the preceding code, we provide the static files middleware a
StaticFileOptions instance. It tells the middleware where we put the
static files and how a client can request them. The first assets string
in PhysicalFileProvider identifies the physical path of the files folder.
And the second assets string assigned to RequestPath represents the
URL path that a user should navigate to get the file. In our example,
the user would call https://localhost:5001/assets-
url/Logo_Square.png to get the logo placed under the Assets folder:

Figure 6.6: Serve files under another directory

It works now that we can place files under any folders we desired.
However, if you browse the home page, you will find out that it is a
plain text page, with no color, no font size, and no style. This is
because moving the static files directory from wwwroot to and the
web application cannot find those CSS and JavaScript files under the
Assets folder anymore:

Figure Missing CSS and JavaScript files

But we can easily fix it. Leave the default UseStaticFiles method and
call it again in the next line with our customized files directory. In
this way, you can serve any many directories as you want.

Serve Dynamic Files

In the last section, we discussed how to serve static files to
customers. Static files are files that will not change, for example,
website logo, or website license claim. However, when your
customer requires a statistical report for the last month, it is
impossible for developers to prepare such a file in advance and put it
under a certain directory. These are dynamic files, and they are
generated only when it was requested, or at least they will change
over time. To serve a dynamic file, we need help from JavaScript.
Add a new eshop.js under wwwroot folder with the following code:

function download() {

 const current = new Date();

 const day = current.getDate()

 const month = current.getMonth() + 1

 const year = current.getFullYear()

 const time = year + "/" + month + "/" + day + " " +
current.getHours() + ":" + current.getMinutes() + ":" +
current.getSeconds();

 const data = 'hello world!' + "\n" + time;

 const blob = new Blob([data]);

 const url = URL.createObjectURL(blob);

 const anchorElement = document.createElement('a');

 anchorElement.href = url;

 anchorElement.download = 'hello.txt';

 anchorElement.click();

 anchorElement.remove();

 URL.revokeObjectURL(url);

}

In the download function, we first get the current date and time from
the Date object. Then combined with "hello every time a client
requests this document, we can generate the content based on the
current time. The rest of the function creates an anchor element,
which will navigate to the URL and represent the file data through a
Blob object. Finally, we invoke the click event on the anchor

element, remove the element from the DOM and revoke the URL so
that the browser will not keep the reference any longer:

html>

lang="en">

id="app">Loading...

id="blazor-error-ui">

 An unhandled error has occurred.

 href="" class="reload">Reload

Next, we reference this JavaScript file globally in the index.html so
that every page in our EShop application can call this download
function just like what you would normally do in any JavaScript
project:

@page "/shop-item"

@using EShop.WebAssembly.Shared;

class="ItemContainer">

@Item.Name

$ @Item.Price

@Item.Description

class="ItemDisplay">

 src="@Item.ImageUrl" />

class="NewComment">

 type="text" @bind="Content"/>

 OnChange="@UploadImageAsync" />

class="btn btn-primary NewCommentBtn"
@onclick="AddComment">Leave a comment

onclick="download()">Download

class="Comments">

Comments

 @foreach(var comment in Item.Comments)

 {

 CommentModel="@comment" />

 }

On the ShopItem page, we add a button to download this hello world
file with dynamic date and time. In a production application,
JavaScript may depend on the user's input or data from other sources
to generate the dynamic file. This would require the Blazor
application to pass the input or data to JavaScript. And it will be

accomplished by the interop between Blazor and JavaScript which
will be covered in a later chapter.

The previous example represents downloading from a stream that is
recommended to serve a file not larger than 250MB. If you are
providing a file larger than 250MB to the customers, a better way is
to download it from a URL. The steps are basically the same as
before, but you will provide the file name and URL directly to the
JavaScript. The file could in fact from an external source, or, if you
are implementing a micro-service architecture, from another service
in your clusters.

Security Advice

When you are serving files, it is recommended that files downloaded
are located separately from the system files, or code files on the
server, as a hacker may acquire the execute permissions on the
directory. Placing all the files together prohibits you from applying
different security control policies on different types of files.

Don't forget to revoke the URL; otherwise there may be memory
leaks to the clients. And make sure to perform security checks on the
server when you are interacting with customers. Even when you have
applied validation or checks on the client side, say, in JavaScript,
keep in mind that you need to double-check again as client
validations can easily break through.

If you are providing files through any external sources, remember to
run a security scan before you pass them to the customers. In general,
the more you don't trust other partners, the more security you will
get.

Conclusion

In this chapter, we first went through the design of the middlewares
pipeline system as a streamline to handle clients' requests. And we
understand that UseStaticFiles is the default middleware to serve
static files to clients, and it can be configured to serve files in
different locations. After that, we covered how to serve dynamic files
as not all required data can be generated before your application goes
online. Last, we discussed how to make your server more secure to
protect your applications.

In the next chapter, we will cover one of the most important
components or elements that you will regularly interact with
customers, forms. We will introduce how to collect data from users
with forms, and how to validate the input from users.

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:

https://discord.bpbonline.com

C

HAPTER
7

Collecting User Input with Forms

Introduction

In this chapter, we will introduce how a user could provide
information to our application and how we will validate the user's
input with customized rules. The form has always been a classic
element for web UI, and it is a bridge that connects users and
applications with two-direction communications.

Structure

In this chapter, we will discuss the following topics:

EditForm

InputBase

Validation

Custom validation

Form submission

EditContext

Form state

Objectives

In this chapter, we will understand how to create forms with Blazor
and how to validate users' data with default or customized rules and
prompt validation errors if data do not satisfy the rules. We will also
be understanding the key concepts in blazor forms, including
submission, context, and state.

Forms

In a web application, forms are used to collect users' input. A typical
example will be the register/login page, where a user types in his or
her username and password to authenticate, and almost all the web
applications in the world have this feature. A native HTML
element works as a container for all kinds of html input elements,
including text input, radio buttons, or even files.

In Blazor, you could always use the native element to manage users'
input data as you did without Blazor. However, it is recommended to
use the EditForm comes with Blazor with more convenient and
advanced data management.

In our EShop application, when there are no clothes of a customer's
size, the customer can request his or her size by filling out a request
form, and our EShop staff will refill the stocks. Let's first see how to
implement this feature with native HTML elements.

First, we create a new page file RequestItem.razor, under the Pages
folder of EShop.WebAssembly project. Then we add the newly
created page to the navigation menu. Find NavMenu.razor under the
Shared folder in the project and update the
element:

@* some code *@

class="flex-column">

class="nav-item px-3">

 class="nav-link" href="" Match="NavLinkMatch.All">

 class="oi oi-home" aria-hidden="true"> Home

class="nav-item px-3">

 class="nav-link" href="counter">

 class="oi oi-plus" aria-hidden="true"> Counter

class="nav-item px-3">

 class="nav-link" href="fetchdata">

 class="oi oi-list-rich" aria-hidden="true"> Fetch data

class="nav-item px-3">

 class="nav-link" href="cart">

 class="oi oi-list-rich" aria-hidden="true"> Cart

class="nav-item px-3">

 class="nav-link" href="shop-item">

 class="oi oi-list-rich" aria-hidden="true"> ShopItem

class="nav-item px-3">

 class="nav-link" href="request-item">

 class="oi oi-list-rich" aria-hidden="true"> RequestItem

@* some code *@

We added another
element navigating to the request-item form page. Now let's complete
the new page RequestItem.razor with the native element:

@page "/request-item"

Request Item

Please fill in the request form below if you do not
find desired item.

Native form element

 for="item">Item:

 type='text' name='item' id='item'
required>

 for="size">Size:

 value="s">Small

 for="count">Count:

 type='number' name='count'
id='count' required min="1" max="10">

 type='submit' />

We are using a plain form here, without any customized style, so the
form would not be that attractive. But it is good enough to
demonstrate the core feature provided by the native
element. For example, some fields are marked as required, and the
form will not be submitted if these fields are empty. We also add a
min and max validation to verify that the count value must be
between 1 and 10. Refer to the following figure:

Figure Native HTML form

Next, we will compare it with a form generated by the EditForm
component that comes with the Blazor framework.

EditForm

The source code of EditForm is located at and we will show some of
the most important sections here:

public class EditForm : ComponentBase

{

 private EditContext? _editContext;

 [Parameter]

 public EditContext? EditContext

 {

 get => _editContext;

 set

 {

 _editContext = value;

 _hasSetEditContextExplicitly = value != null;

 }

 }

 [Parameter] public object? Model { get; set; }

 [Parameter] public EventCallback OnSubmit { get; set; }

 [Parameter] public EventCallback OnValidSubmit { get; set; }

 [Parameter] public EventCallback OnInvalidSubmit { get; set; }

 protected override void OnParametersSet()

 {

 if (Model != null && Model != _editContext?.Model)

 {

 _editContext = new EditContext(Model!);

 }

 }

 protected override void BuildRenderTree(RenderTreeBuilder
builder)

 {

 Debug.Assert(_editContext != null);

 builder.OpenRegion(_editContext.GetHashCode());

 builder.OpenElement(0, "form");

 builder.AddMultipleAttributes(1, AdditionalAttributes);

 builder.AddAttribute(2, "onsubmit", _handleSubmitDelegate);

 builder.OpenComponent>(3);

 builder.AddAttribute(4, "IsFixed", true);

 builder.AddAttribute(5, "Value", _editContext);

 builder.AddAttribute(6, "ChildContent",
ChildContent?.Invoke(_editContext));

 builder.CloseComponent();

 builder.CloseElement();

 builder.CloseRegion();

 }

 private async Task HandleSubmitAsync()

 {

 Debug.Assert(_editContext != null);

 if (OnSubmit.HasDelegate)

 {

 await OnSubmit.InvokeAsync(_editContext);

 }

 else

 {

 var isValid = _editContext.Validate();

 if (isValid && OnValidSubmit.HasDelegate)

 {

 await OnValidSubmit.InvokeAsync(_editContext);

 }

 if (!isValid && OnInvalidSubmit.HasDelegate)

 {

 await OnInvalidSubmit.InvokeAsync(_editContext);

 }

 }

 }

}

We first learned, that the EditForm inherits ComponentBase as many
other Blazor components do. In the method (we introduced this
method in previous chapter about the advanced Blazor component),
EditForm uses the element under the hood as well. Then it defined
more attributes on the form and cascading the EditContext to its child
components.

The most important parameters of this EditForm component are the
Model and the The Model could be of any types, while EditContext
has a dedicated EditContext type. In general, we will only one of
these two parameters. If we assigned a model to the Model parameter,
a new EditContext will be generated with a simple EditContext
constructor that requires one parameter of the model. Otherwise, we

are required to assign an EditContext instance directly to the
EditContext parameter. In both ways, the EditForm component will
have an EditContext parameter that is not null and cascade it to the
children.

Now, let us see how to replace the native element with the Blazor
EditForm component. By default, the namespace
Microsoft.AspNetCore.Components.Forms will be imported in the
_Imports.razor file, or you could specify this namespace in your razor
file with the @using directive.

First, we create a new file RequstItem.cs, under the Models folder for
the RequestItem model:

namespace EShop.WebAssembly.Models;

public enum RequestItemSize

{

 Small,

 Medium,

 Large

}

public class RequestItem

{

 public string EShopItemName { get; set; }

 public RequestItemSize Size { get; set; }

 public int Count { get; set; }

}

Then we will use the EditForm component in the RequestItem.razor
page, adding the following code to the page:

EditForm component

Model="@_requestItem">

 Item:

 id="editform-item" @bind-
Value="_requestItem.EShopItemName" />

 Size:

 id="editform-size" @bind-Value="_requestItem.Size">

value=@RequestItemSize.Small>@RequestItemSize.Small

value=@RequestItemSize.Medium>@RequestItemSize.Medium

value=@RequestItemSize.Large>@RequestItemSize.Large

 Count:

 id="editform-count" @bind-Value="_requestItem.Count" />

 type="submit">Submit

Refer to the following figure:

Figure EditForm

We are not validating the user's input here, as it will be covered in
later sections. In general, it is recommended to use the EditForm
component because it provides more features than native element.
And in the following sections, we will cover these features.

InputBase

In the last simple example, you may notice that Blazor not only
provides the EditForm component to enhance the development
experience, but also comes with a few InputXXX components to
replace different types of the native element. For example, we
used InputSelect and InputNumber to replace

type='text' and
type='number' These are all

components inheriting

InputBase is an abstract class sits within the same namespace
with It has a private property of type EditContext to receive the
cascaded parameter from its parent Other than that, it has a
Value parameter of generic type TValue to be used as the value
of this input, along with a ValueChanged callback that will
update the bound value. It is intended to use the Value parameter
with two-way binding, and you may refer to the previous
chapter where we covered this topic.

InputSelect component is used to provide a few options to the
application users. In our EShop example, people will choose
their desired size of the clothes with this component. But the
code we wrote here does not really follow best practice design
principles. Once we are required to extend the size options, both
the code of the enumeration and the form page with InputSelect

component must be modified. There is a good chance that we
might miss one of the modifications here when you are facing a
complex feature and so the inconsistency comes.

To fix that, we can build a customized component inheriting
InputBase as well that all it needs is the type of your enum and
it will automatically show all the available options come from
that enum type.

We create a new file InputEnum.cs under the Components
folder:

using System.Diagnostics.CodeAnalysis;

using System.Globalization;

using Microsoft.AspNetCore.Components;

using Microsoft.AspNetCore.Components.Forms;

using Microsoft.AspNetCore.Components.Rendering;

namespace EShop.WebAssembly.Components;

public class InputEnum : InputBase

{

 protected override bool TryParseValueFromString(string?
Value, [MaybeNullWhen(false)] out Tenum result,
[NotNullWhen(false)] out string? validationErrorMessage)

 {

 if (string.IsNullOrWhiteSpace(value))

 {

 result = default;

 validationErrorMessage = $"{nameof(value)} cannot be
null";

 return false;

 }

 if (Enum.TryParse(typeof(Tenum), value, out object
convertedEnum))

 {

 result = (Tenum)convertedEnum!;

 validationErrorMessage = null;

 return true;

 }

 result = default;

 validationErrorMessage = $"{nameof(value)} is not valid";

 return false;

 }

 protected override void BuildRenderTree(RenderTreeBuilder
builder)

 {

 builder.OpenElement(0, "select");

 builder.AddMultipleAttributes(1, AdditionalAttributes);

 builder.AddAttribute(2, "onchange",
EventCallback.Factory.CreateBinder(this, value =>
CurrentValueAsString = value, CurrentValueAsString, null));

 // Add an option element per enum value

 foreach (var value in Enum.GetValues(typeof(Tenum)))

 {

 builder.OpenElement(3, "option");

 builder.AddAttribute(4, "value", value.ToString());

 builder.AddContent(5, value.ToString());

 builder.CloseElement();

 }

 builder.CloseElement(); // close the select element

 }

}

First, we override the abstract method which will parse the input
value to an enumeration instance. Next, we also override the
method BuildRenderTree to define how the component is
rendered. In fact, InputEnum wraps the native

	Start

